CHBA led LEEP events coming to a region near you

WORKSHOPS PLANNED ACROSS CANADA

- Fall 2024: CHBA delivering 7 sessions in ON, 4 across the Prairies, 3 in BC, 4 in YK and 2 in the Maritimes
- Sessions on envelopes, mechanicals, windows, resilience and heat pumps offered through local HBAs
- Contact Kay Parkes-Blanc Program Coordinator for LEEP for more information!

X LEEP RESPONDS TO MARKET NEEDS

Your feedback today helps us adapt content and meet builder needs across the country!

QUESTIONS & CONTACT

Kay Parkes-Blanc Project Coordinator, LEEP

613.230.3060 x243 Khadijah.Parkes-Blanc@chba.ca

CHBA's Net Zero Leadership Summit

Local Energy Efficiency Partnerships Air Source Heat Pumps for High Performance Homes

June 10, 2024 - Vancouver

By the end of today's session, you will have:

- Learned about best practices for successful heat pump integration into net zero new builds
- Identified new technologies and products to improve the performance of a local case study home
- Accessed new NRCan Tools for decision making in collaboration with your mechanical trades

LOCAL ENERGY EFFICIENCY PARTNERSHIPS

Agenda for today

7:30-8:30 BREAKFAST

20 Welcome! Who & What is LEEP? min NRCan

- 30 PANEL: Builder challenges with heat pumps in high performance housing min Panelists
- An Introduction to NRCan's NEW ASHP Sizing & Selection Tool 30 NRCan min
- Ductwork: best practices and solutions for new housing 30 Rob Pope - Ecolighten min

10:30-10:45 BREAK

Canada

- 30 PANEL: Challenges with ductwork & distribution system design min Panelists
- **60** Sizing heat pumps: Equipment selection & optimization min NRCan & Rob Pope - Ecolighten

12:15-1:15 LUNCH

Controls systems: Best practices in operation for thermal comfort & performance 30 Rob Pope - Ecolighten min

- Manufacturer Presentations + Q&A 75
- Daikin, Mitsubishi & Panasonic min

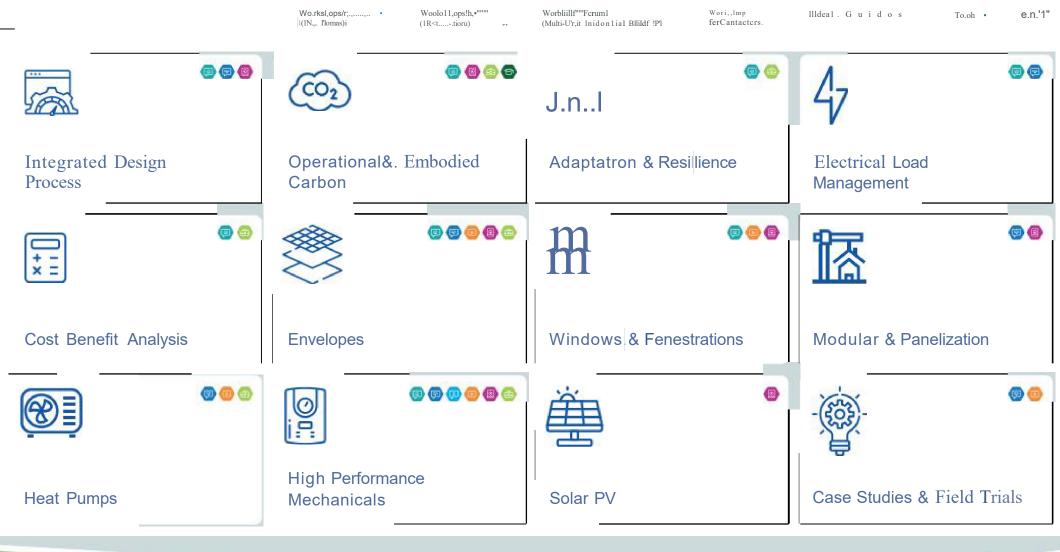
3:00-3:15 BREAK

- 30 PANEL: Challenges with heat pump controls & operation min Panelists
- Let's recap: System selection best practices 30 NRCan min
- **Closing Remarks & What's next?** 30 NRCan min

4:30 WRAP UP

Natural Resources **Ressources naturelles** Canada

What is LEEP?

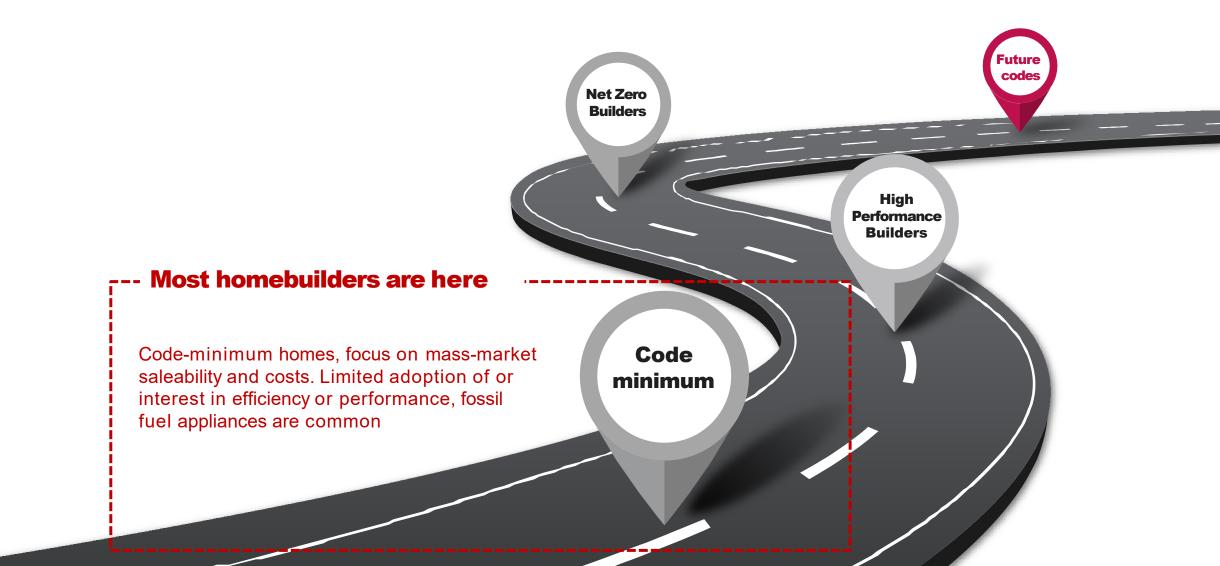

Local Energy Efficiency Partnerships

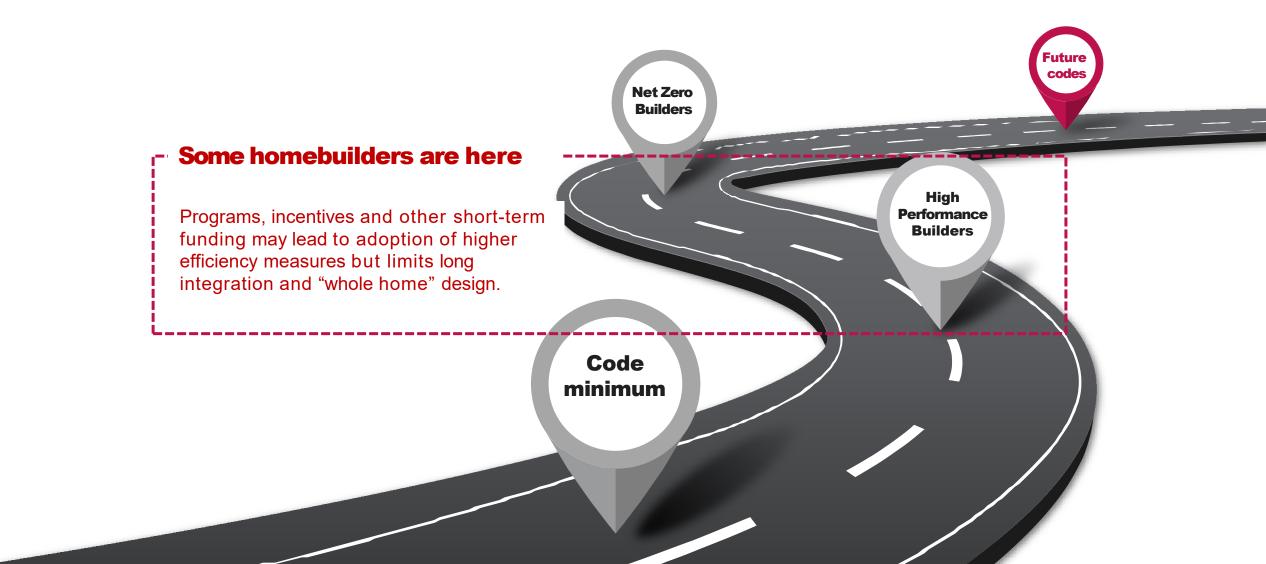
We work with Canadian industry to make homes more **resilient**, **energy efficient and affordable** in the face of climate change.

LEEP reduces industry **time & risk** in adopting new technology and building innovations.

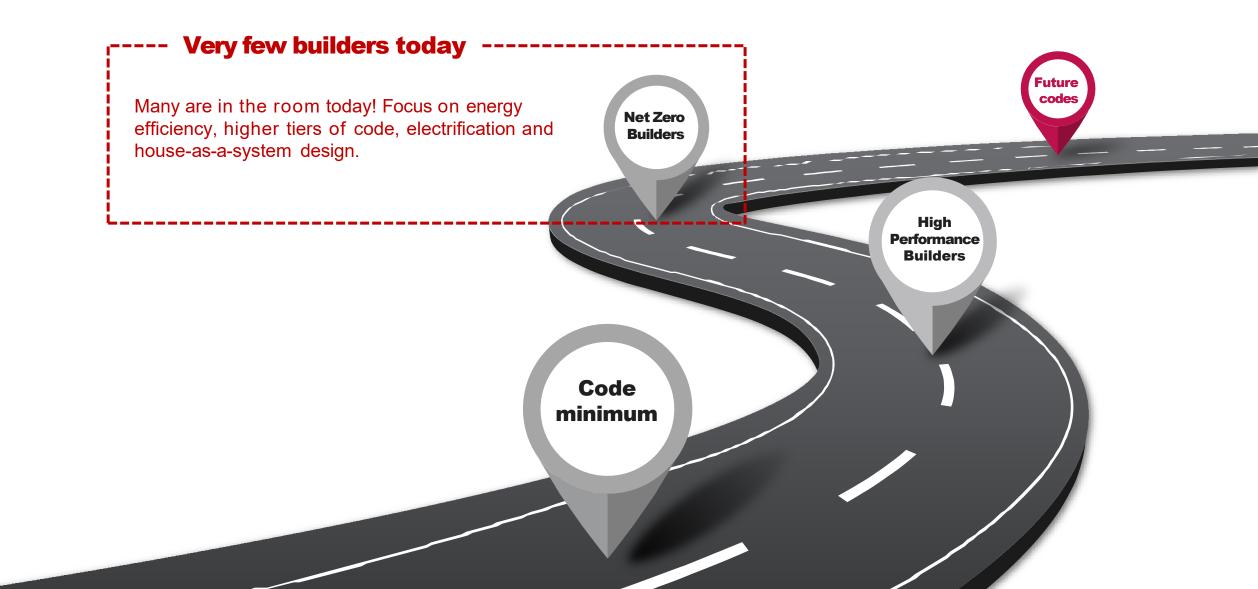
Natural Resources Ressources naturelles Canada

Canada

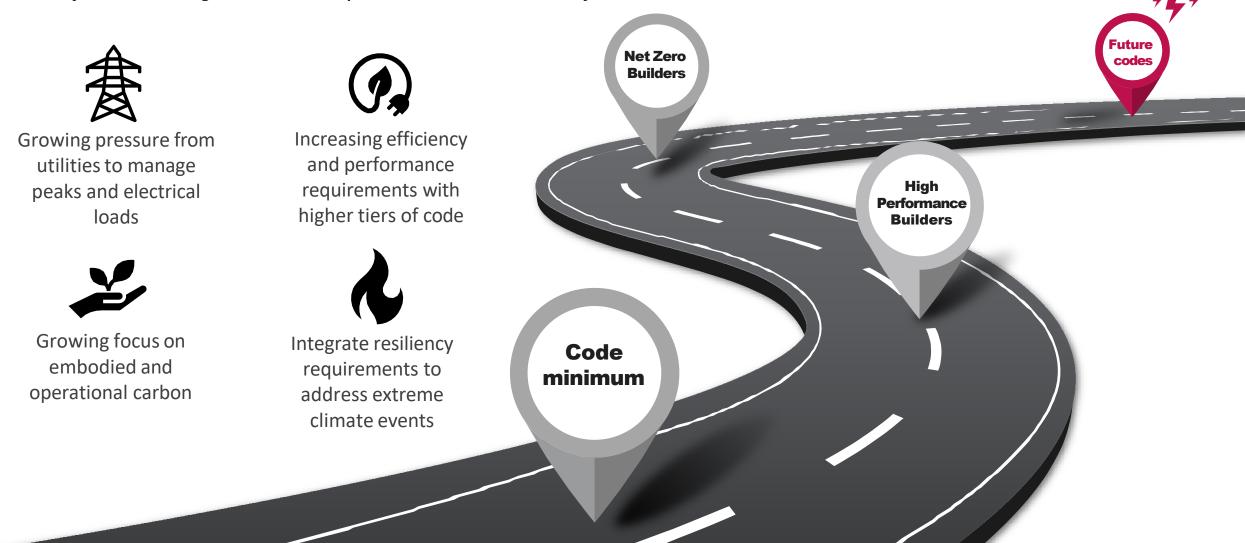



Who is in the room today? Tell us what city you're from!

(i) Start presenting to display the poll results on this slide.


Where is the homebuilding industry heading?

Where is the homebuilding industry heading?



Where is the homebuilding industry heading?

Heat pumps are a key component of the transition to net-zero, low-emission homes.

Pressures from future codes, programs and consumer demand continue to push the industry towards higher levels of performance, efficiency and resilience.

Design & Selection of Mechanical Systems is not a "once and done" step

ACTIVE LISTENING & IMPLEMENTATION **EXERCISE NEEDED**

A **PRESCRIPTIVE** approach leaves decisions in the hands of trades & distributors.

Limited opportunity for design thinking or consideration of longterm needs

Assumes that lowest upfront costs are lowest overall costs - but may pay more down the road for performance, callbacks, etc.

-VS-

A COLLABORATIVE approach brings together trades, mechanical designers and builders, right from the start.

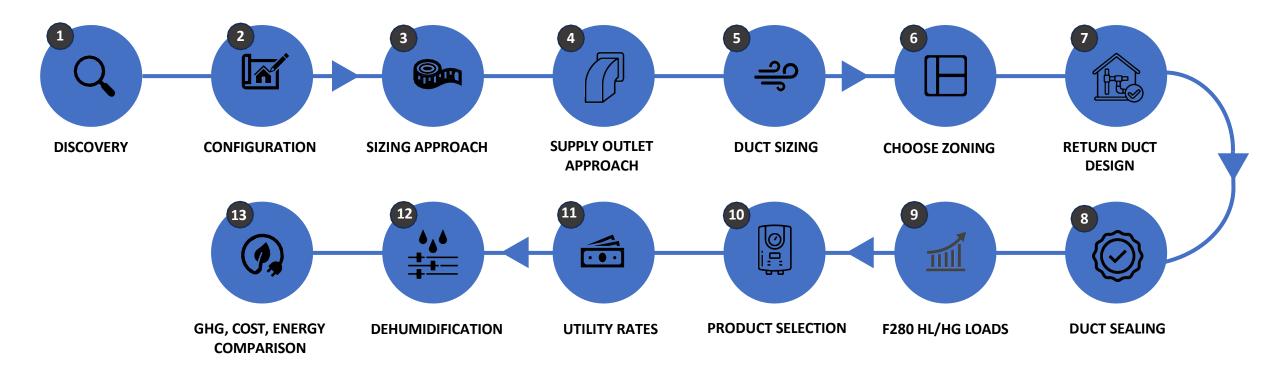
Whole-home approach considers both upfront costs as well as operating and emissions costs over time.

Focus on performance and long-term outcomes for builders, homeowners, grid, etc.

The initial upfront cost of this system is slightly more than a traditional system – and I do mean slightly. But with the fewer customer comfort complaints on the backend, we are spending less time, less service calls, less cost, going out to address those concerns on the back end. So we do feel that that cost recovery is coming in the form of soft costs on the end.

Brian Watters

Construction Manager, Daytona Homes


Canada

Natural Resources Ressources naturelles Canada

adä

16

Key steps to facilitate best practices in HVAC Design & Installation

Canada

Natural Resources Ressources naturelles Canada

UNCLASSIFIED - NON CLASS

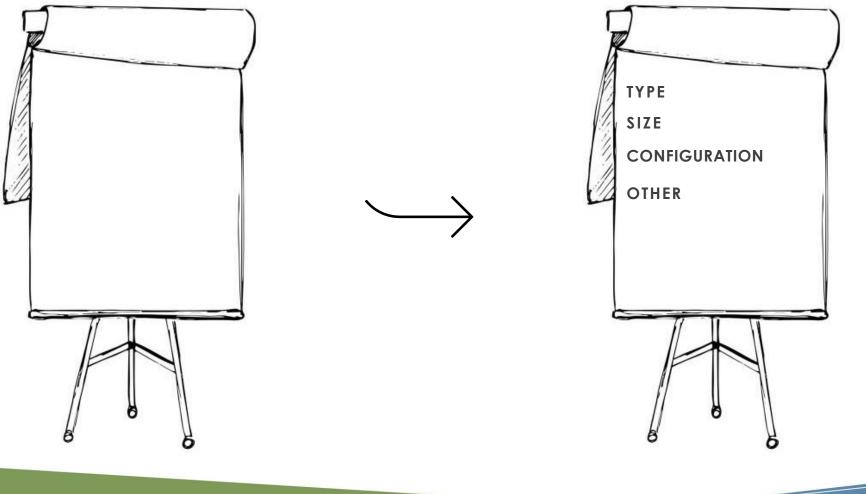
Let's look at our case study home (Climate Zone 5)

BUILDER GOALS:

- Achieve NZ standard
- Improve home thermal comfort
- Manage costs

HOIVIE CHARACTERISTICS				
	Heating load	Cooling Load		
Zone 1 (Basement):	11,076 BTU/h	7,756 BTU/h		
Zone 2 (Main floor):	9,535 BTU/h	9,983 BTU/h		
Zone 3 (Second Floor):	9,383 BTU/h	10,002 BTU/h		
	29,933 BTU/h (2.49 Ton)	27,441 BTU/h (2.29 Ton)		
	NET ZERO SPECIFICATIO	NS		
Air Tightness	1.5 ACH50			
Attic	R60			
Walls	R22+10continuous			
Basement	R22+10continuous			
Exposed Floor	R40			
Windows	Double R4, 0.6 SHGC, 10.6% of wall area			
Ventilation	75% Efficiency-HRV			
Heating & Air Conditioning	??			
Design Temperature	-23ºC			

UANAE CUADACTEDICTICC


es Ressources naturelles Canada

Group Discussion

What type of heating system would you install in this home?

Natural Resources Ressources naturelles Canada Canada

Coming up next: Panel discussion on Builder challenges with heat pumps in high performance housing

ANDY ODING

Vice President, Building Science **Building Knowledge Canada**

ROB POPE

Co-founder, Mechanical Designer **Ecolighten Energy Solutions**

NATHAN STONE

Managing Partner Odessa Group

SHAY BULMER

Owner, General Manager Northern Homecraft

Canada

Natural Resources Ressources naturelles Canada

UNCLASSIFIED - NON CLASS

THANK YOU

Canadian Home Builders' Association

DAIKIN Panasonic

Canada

Natural Resources Ressources naturelles Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

Panel Session: Industry Challenges

June 10, 2024 - Vancouver

New Air Source Heat Pump Sizing & Selection App

June 10, 2024 – Vancouver Jérémie Léger – LEEP Sneha Bernard – LEEP

ลสล่

NRCan's ASHP Sizing & Selection App

01

- What is the ASHP Sizing & Selection App?
- Let's recap on the builder issues
- How can the app assist in selecting better systems

02

Demo of the New Web App

- Why should builders care?
- How to use it in IDP?
- Let's explore on today's case study home...
- Builder activity on the steps

Today's Agenda Through the Lense of the HP App

Key Takeaways

Canada

latural Resources Ressources naturelles Canada

UNCLASSIFIED - NON CLASSIFIÉ

What is the ASHP Sizing & **Selection App?**

Natural Resources Ressources naturelles Canada

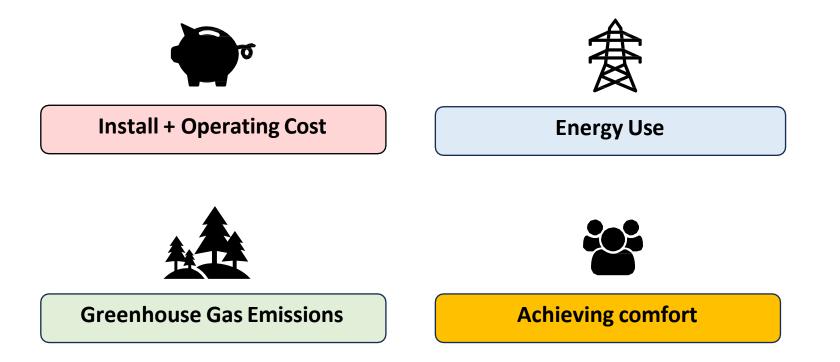
Canada

We heard from you...

Common issues with HVAC design and performance:

- > Experiencing overheating on shoulder season in some rooms (room over garage, second floor rooms)
- **Placement of outdoor unit** is a challenge in urban environments with noise complaints and bylaws restricting locations
- Wall space for mechanicals and other trades is limited \triangleright
- Keeping **cost** low to remain competitive
- Frequent **call backs** with underperforming systems

Leverage the NRCan ASHP Sizing & Selection App to resolve key issues on performance



Canada

Ressources naturelles atural Resources Canada

Mechanical systems don't sell homes, but their outcomes can

slido

How do you typically make decision on selecting mechanical equipment, e.g. rely on HVAC contractor, rely on HVAC designer, seek advice from industry forums...?

(i) Start presenting to display the poll results on this slide.

The ASHP Sizing & Selection Tool allows you to select systems based on more than just lowest cost

Facilitate a step-by-step conversation with HVAC trades, designers, and builders to resolve challenges & communicate outcomes:

- □ System sizing & product selection: Access an extensive library of products including all leading brands to select equipment most appropriate for your new builds
- □ Energy & GHG Savings: Compare savings, costs and emissions across different products and configurations to better communicate with homeowners
- **Controls:** Optimize controls settings for ease of use, thermal comfort and cost-effectiveness

Natural Resources Ressources naturelles Canada Canada

Does business as usual actual get you to optimal outcomes?

BUSINESS AS USUAL

- Save \$\$\$ on upfront HVAC design
- Lowest cost equipment may win the bid
- Tried & true solutions reduce (perceived) risks
- Limits complications for operations & maintenance for buyers

COLLABORATIVE APPROACH

- Long term savings with reduced ductwork & labour costs
- Systems optimized for long term performance and costs
- New systems and product availability expand options for homeowners
- Optimize utility & GHG savings, limit reliance on back up systems

Selecting a heat pump without collaborative HVAC design is like...

Walking into a car dealership without specifying

- ... what you'll be using your car for
- ... where you'll be driving it
- ... how big your family is
- ... your fuel efficiency requirements
- ... what your price point is
- ... whether you even know how to drive it!

You could end up with...

-OR-

-OR-

atural Resources Ressources naturelles anada Canada

UNCLASSIFIED - NON CLASS

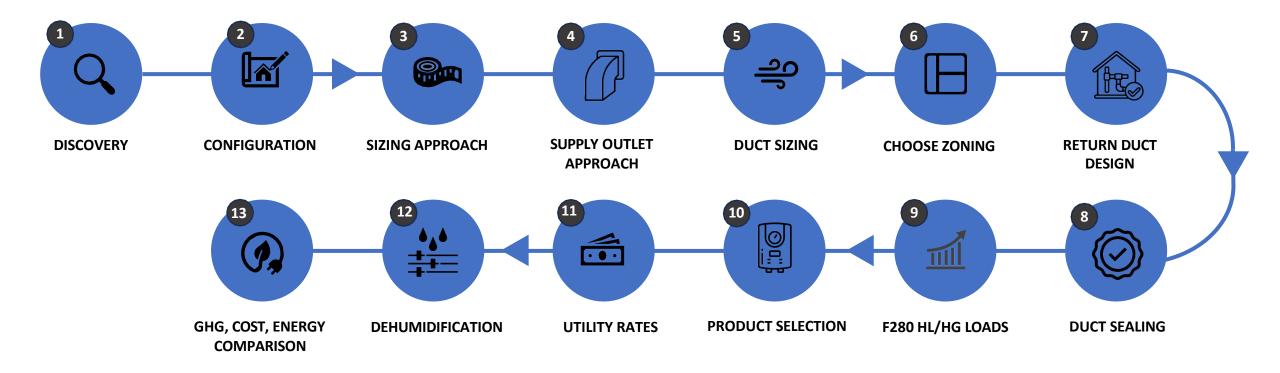
Let's look at our case study home (Climate Zone 5)

BUILDER GOALS:

Canada

- Achieve NZ standard
- Improve home thermal comfort
- □ Manage costs

Heating load Cooling Load Zone 1 (Basement): 11,076 BTU/h 7,756 BTU/h Zone 2 (Main floor): 9,535 BTU/h 9,983 BTU/h one 3 (Second Floor): 9,383 BTU/h 10,002 BTU/h 29,933 BTU/h (2.49 Ton) 27,441 BTU/h (2.29			
Cone 2 (Main floor): 9,535 BTU/h 9,983 BTU/h one 3 (Second Floor): 9,383 BTU/h 10,002 BTU/h			
one 3 (Second Floor): 9,383 BTU/h 10,002 BTU/h			
29,933 BTU/h (2.49 Ton) 27,441 BTU/h (2.29			
	Ton)		
NET ZERO SPECIFICATIONS			
Air Tightness 1.5 ACH50			
Attic R60			
Walls R22+10continuous			
Basement R22+10continuous	R22+10continuous		
Exposed Floor R40	R40		
Windows Double R4, 0.6 SHGC, 10.6% of wall area	Double R4, 0.6 SHGC, 10.6% of wall area		
Ventilation 75% Efficiency-HRV	75% Efficiency-HRV		
iting & Air Conditioning ??	??		
Design Temperature -23ºC	-23ºC		

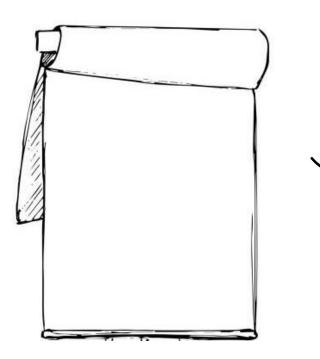

LIONAL CHADACTEDICTICS

Natural Resources **Ressources naturelles** Canada

13 Steps to facilitate better HVAC design – we'll be working through these steps throughout the day

Canada

Natural Resources Ressources naturelles Canada


UNCLASSIFIED - NON CLASS

12

Group Discussion

Let's explore how we can modify our "business as usual" practices

Step	Current	Interested to explore
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

Natural Resources Ressources naturelles Canada

Canada

Demo: NRCan's Air Source Heat Pump Sizing and Selection Tool

Before beginning, you will need:

- ✓ The whole home design heating and cooling load of the home
- ✓ Be ready to discuss past issues and goals for the project
- ✓ Understand market challenges and what is motivating sales

NRCan's ASHP Sizing & Selection App

How has a collaborative process with your trades affected your mechanical design?

(i) Start presenting to display the poll results on this slide.

Key takeaways

101 NRCan's ASHP Sizing & Selection App provides data to support you selecting your mechanical systems.

Better data - leads to effective communication of performance Careful selection through discussion leads to better performance – and fewer callbacks

02 Today we will walk through the steps of the app and explore how you can change your mechanicals to improve comfort, energy and cost performance

Coming up next:

Duct design option for improving comfort and reducing cost (step 4-8) Load calculation and selecting systems for heating and cooling best performance (step 2, 3, 9, 10) Selecting you control approach to optimize for your goals (Step 11-12)

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

Duct Design and Selection

Best practices to optimize for comfort

June 10, 2024 – Vancouver Rob Pope – Ecolighten Energy Solutions

UNCLASSIFIED - NON CLASSIFIÉ

Canada

Presentation Outline

01

Introduction to Current Industry Landscape

Current Industry Landscape and Practices

HVAC Design with Forced Air Systems 02

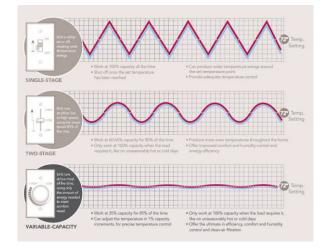
Builder Collaboration with HVAC Design

03 **Utilizing NRCan's Decision Guide and Tools**

Canada

Natural Resources Ressources naturelles Canada

Canada


Current Industry Landscape

[Source: canada.ca]

Regulatory & Political

Net-Zero Emissions in Canada by 2050 2030 Emissions Reduction Plan: 40 - 45% Reduction from 2005 Levels by 2030

[Source: Fire & Ice Heating & Air Conditioning]

Changing Technology

VRF, Cold Climate Heat Pumps

Consumer Climate

Motivated Homeowners for GHG Reduction

Canada

Natural Resources Ressources naturelles Canada

Who currently provides your duct design for your new construction homes?

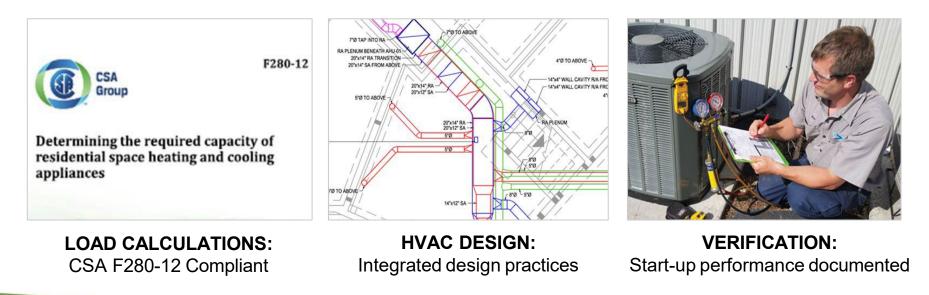
(i) Start presenting to display the poll results on this slide.

Current Practices

Load Calculations: Too often the "rule of thumb"

Design: More coincidental than coordinated

Verification: Commissioning is infrequent


Canada

Natural Resources Ressources naturelles Canada

Enhanced Practices

- Best practices in HVAC design start with code compliant F280-12 load calculations as the foundation on which all other HVAC decisions are dependent.
- Integrated and coordinated design between builders, architects/designers, mechanical designers and contractors will optimize the HVAC system performance within changes in housing form, style, design and construction that have impacted the mechanical needs of today's housing.

Evolving Practices

- HVAC design landscape is quickly evolving and driven by regulatory changes (e.g. Energy Step Code) and new technologies. Adapting to these changes requires better building/design processes.
- Standardizing HVAC design information for purposes of compliance will encourage better practices by industry, and result in improved energy performance required by performance-based codes.

Canada

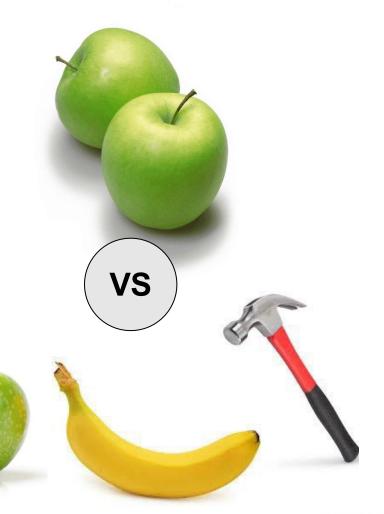
HVAC Design with Forced Air Systems

Natural Resources Ressources naturelles Canada Canada

HVAC Design – Builder Considerations

Typical home design is done without anticipation or planning for the home's necessary HVAC system. It is imperative that builder/client needs, and project imperatives are established upfront. Consultation will help determine the most appropriate HVAC system for the project with respect to the following considerations:

- **Housing Type** Low-rise attached houses and multi-level / single-storey houses.
- **Financial** Budgets, value and costs/benefit.
- **Compliance Requirements** Performance codes and HVAC design requirements unique to municipalities.
- **Comfort & Health** Occupant expectations, indoor air quality and humidity controls.
- **Design/Construction Coordination** Integrating HVAC with structural, architectural and interior design.
- Fuel Source & Systems Gas, electric and geothermal. Forced air, radiant or hybrid.

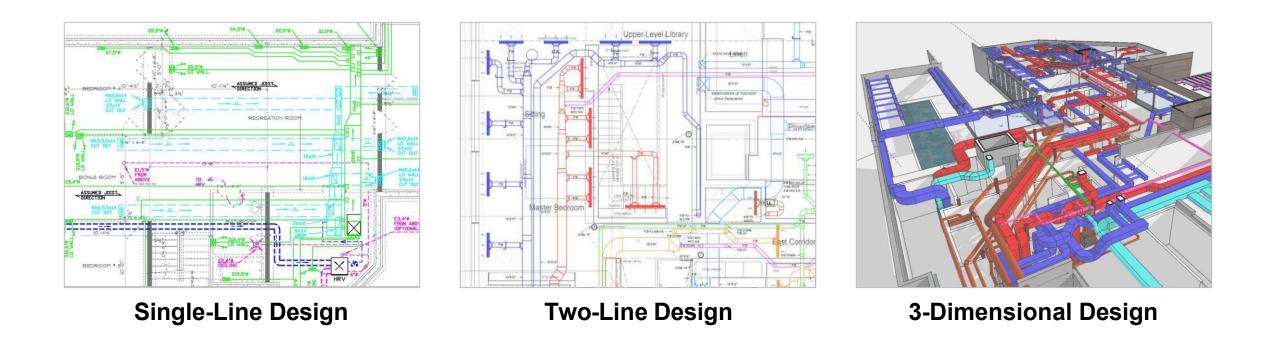


HVAC Design – Importance of Bid Specifications

As performance requirements in new construction become more complex requiring increased collaboration, it is crucial that the entire project team have the same basis of project requirements.

Bid Specifications

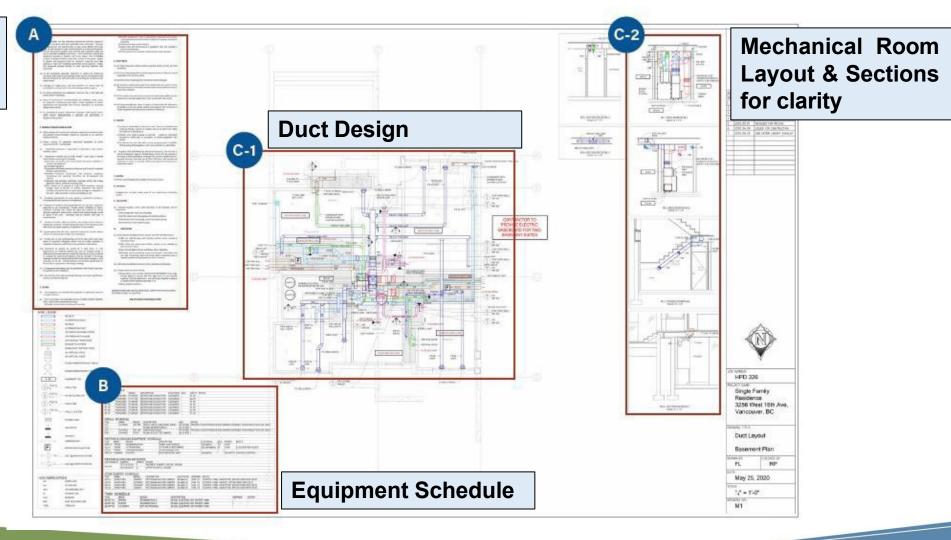
- Support a quality HVAC system installation by providing clear instructions on the intent, performance and installation requirements of the project.
- Key components include:
 - Equipment Schedule
 - Standards of Practice, and
 - Mechanical Design



Natural Resources Ressources naturelles Canada Canada

HVAC Design – Forced Air System: Ductwork Drawings

Forced air system duct designs are provided in single-line, two-line and 3D formats depending on project requirements that incorporate layouts into the architectural plans.



Natural Resources Ressources naturelles Canada Canada

HVAC Design – Forced Air System: Drawing Example

Design Intent & Standards of **Practice**

Canada

Canada

Natural Resources Ressources naturelles Canada

HVAC Design – Field Reviews

HVAC field reviews should take place at **Start of Construction**, **During Construction** (Mid-Stage) and at Completion.

- **Prior to construction:** Review HVAC design with the designer, installer and builder to check and make timely adjustments to the design if required.
- At mid-stage: Review & verify that the design and installation is coordinated with electrical, hydraulic, structural, and architectural design, and correctly installed as per the design directions. This should occur after rough-in ductwork and piping for HVAC system is in place and prior to covering walls and ceilings.
- **Post-installation:** Review & verify all installed equipment is properly commissioned, balanced and ready to use. This should occur at project completion but prior to occupancy.

Field Reviews

Natural Resources Ressources naturelles Canada Canada

HVAC Design – Verification of Performance

Verifying in field HVAC system performance provides builders peace of mind knowing that industry regulations and standards of excellence will be met.

STEP 1 Mid-stage blower door testing to confirm air tightness targets will be met

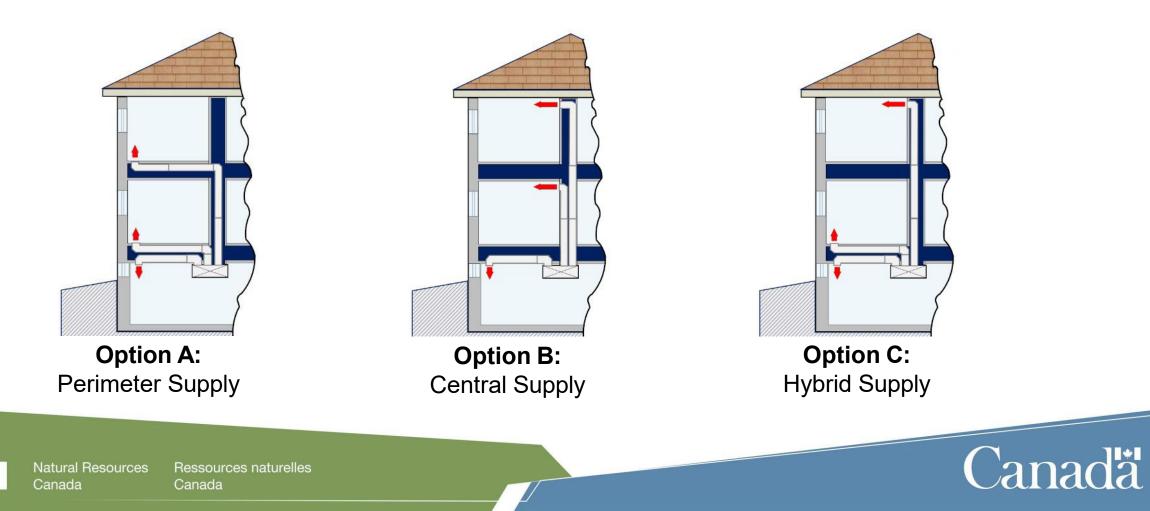
STEP 2 Duct sealing and visual inspection to confirm equipment installation meets design intent with appropriate standard of practice

STEP 3 Ensure start-up equipment procedures are followed and commissioning documented for homeowner.

Canada

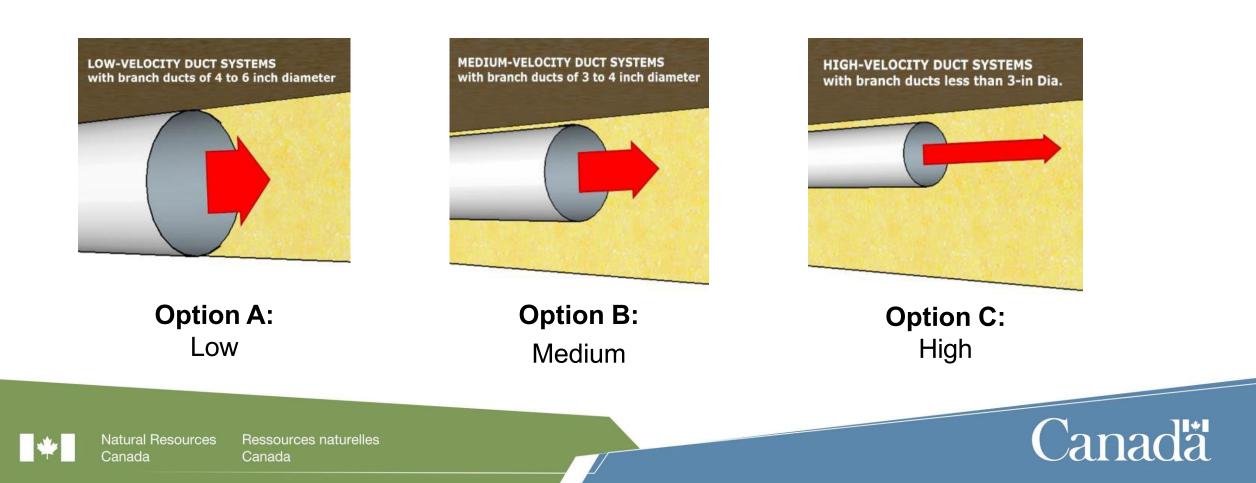
Vatural Resources Ressources naturelles Canada

13 Steps to Facilitate Best Practices in HVAC Design & Installation

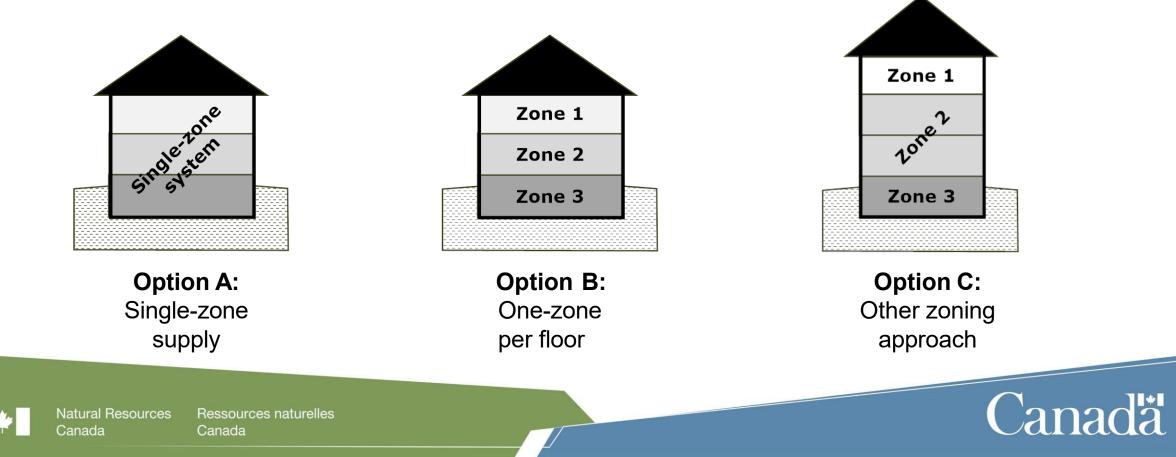


Natural Resources Ressources naturelles Canada

Canada


Supply Outlet Approach

Various duct distribution methods are all acceptable to achieve performance and depend typically on style of structure, aesthetics, and loads.


Duct Sizing

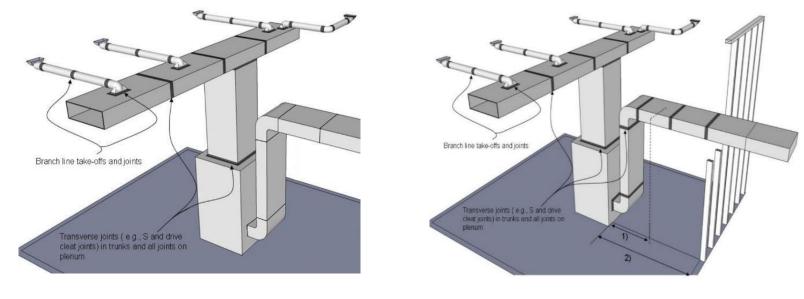
System style include low, medium and high velocities, each with their own set of benefits and compromises. The style of system should be discussed and determined before duct design.

Choose Zoning

Forced-air zoning is common, but does have limitations related to equipment fan modulating range and external static pressures. Zoning can be accomplished by zone damper controls, or multiple fan coils and or heads (such as wall cassettes). Zones can be delineated by floor, load, or area/room usage.

Return Duct Design

It is ideal to have return grilles in every room. However, this is not always possible due restraints such as budgets, structural restrictions, or aesthetic impact. A simplified return layout with fewer centralized grilles is the most common system, utilizing interior door undercuts, and transfer grilles when necessary. At the very least, there should be one return at each level.



Canada

latural Resources Ressources naturelles Canada

Duct Sealing

Sealing of all seams, elbow gourds, and joints ensures the air designed to reach of the registers will actually occur. Not sealing tends to over-condition the lowest levels and areas closest to the equipment, and under-conditions the highest levels and areas farthest away.

Option A: Seal supply ducts only

Option B: Seal supply and return ducts

Canada

Natural Resources Ressources naturelles Canada

HVAC Design – What Have We Learned

01 Changing Landscape

- HVAC design landscape is quickly evolving and driven by changes to regulation (e.g. Energy Step Code), homeowner demand and new technologies. Adapting to these changes requires better building/design processes.
- Improved collaboration and verification between builders and mechanical designers will optimize the HVAC system within the project requirements.

02 NRCan Tool Kit for Air Source Heat Pump Sizing and Selection

 NRCan's "Tool Kit for Air Source Heat Pump Sizing and Selection" is a fundamental resource supporting a more effective approach to HVAC decision-making between builders and mechanical designers.

Let's take a look at your design decision for the case study home...

Step	Current	Interested to explore
1	Discovery: barriers, challenges & pain points	
2	Configuration: centrally ducted system, hybrid install	
3	Sizing approach: Emphasis on cooling	
4	Supply outlet approach: perimeter supply	
5	Duct Sizing: low velocity	
6	Choose Zoning: single zone	
7	Return Duct design: traditional return design	
8	Duct Sealing: base level sealing	
9	F280 HL/HG: Work with HVAC contractor to complete F280 calculations	
10	Heat pump selection: HP does not meet full load, furnace backup	
11	Utility rates/controls: Backup only below TBP	
12	Dehumidification controls : not implemented/not designed	
13	GHG, cost, energy outcomes	

Natural Resources Ressources naturelles Canada Canada

Panel Session: Duct Design

June 10, 2024 – Vancouver

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

Load Calculations for Heat Pumps Best practices in right sizing systems

June 10, 2024 – Vancouver Rob Pope – Ecolighten Energy Solutions

Presentation Outline

01 Importance of Load Calculations

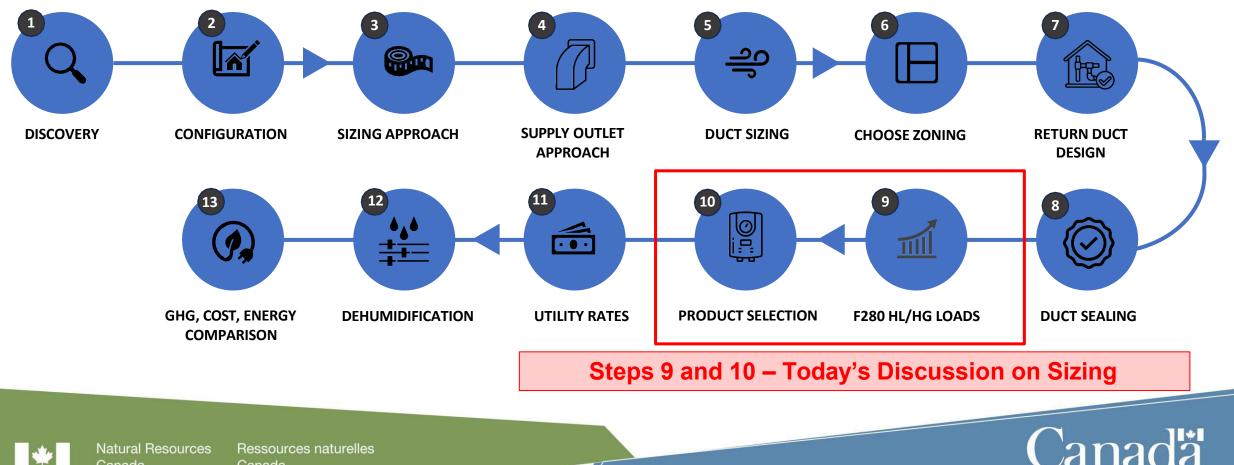
- Right-Sizing with CSA F280-12
- **Equipment Selection**

02 **Industry transition to low-GWP** refrigerants

> Showcasing new research from **Canmet Energy labs**

Envelopes and product availability

How do heating & cooling loads affect available heat pump options?

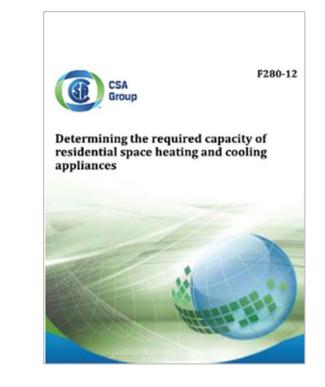


Canada

Ressources naturelles Vatural Resources Canada

03

13 Steps to Facilitate Best Practices in HVAC Design & Installation

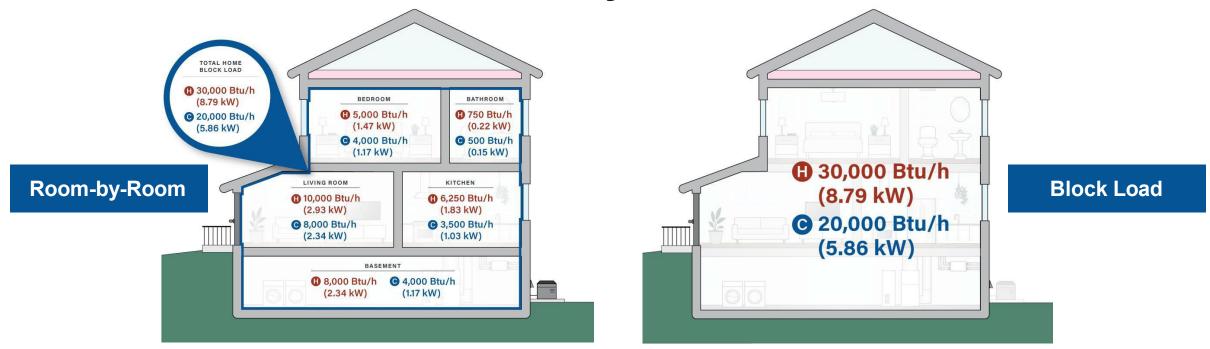


Natural Resources **Ressources naturelles** Canada

Load Calculations – CSA F280-12

CAN/CSA F280-12: Canadian Standards Association (CSA) standard on how to properly size residential space heating and cooling equipment.

- This standard is nationally recognized and **required** in the National ٠ and BC Building Code (Section 9.33)
- It's imperative that residential space heating and cooling systems ۲ have the proper output capacity.
- Too little or too much capacity can create a dangerous and ٠ uncomfortable living environment.



Canada

latural Resources Ressources naturelles Canada

Load Calculations – Room-by-Room vs. Block Loads

Calculation Method/Tool Examples

- CAN/CSA F280: Typically Room-by-Room for new construction and Block Load for retrofits
- HOT2000: Step Code energy modelling software. Not CSA F280 compliant. Typically Block Load.

Natural Resources Ressources naturelles Canada Canada


How do your contractors/designers size mechanical systems?

(i) Start presenting to display the poll results on this slide.

Consequences of Oversizing

Consequences of Improper Sizing of Equipment

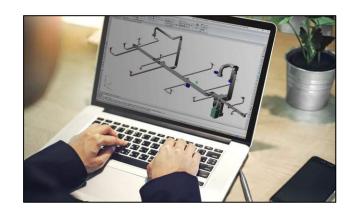
- As homes become more energy-efficient, improper sizing of HVAC equipment is emerging as one of the more serious performance issues in residential construction.
- The consequences of poorly sized HVAC equipment include:

What are some other challenges you have seen with oversized systems

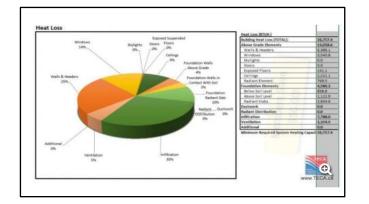
(i) Start presenting to display the poll results on this slide.

Load Calculations – Industry Practices

- **Most common practice -** Rule of thumb. •
- **Too common practice -** Look at rating plate of existing system, then just match it.
- Less common practice is Mechanical Contractors utilizing TECA (BC's Thermal Energy Comfort • Association) CSA F280 compliant software
- **Least common practice** is full consultation with CSA-F280-12 load calculations, cost/benefit . analysis & range of options presented, full commissioning with associated reports, and follow up with occupant after commissioning.



Canada


Ressources naturelles latural Resources Canada

Load Calculations – Industry Trends

Mechanical Designers use sophisticated programs for load calculations and distribution system design.

Example: Wrightsoft

Mechanical Contractors use spreadsheet programs for load calculations.

Example: TECA Quality First[™] Companion Software

Energy Modellers can transfer inputs from HOT2000 to Volta Snap for CSA F280 compliant load calculations.

Canada

Ressources naturelles Vatural Resources Canada

Load Calculations – F280-12 Verified Software

- HVAC Designers of Canada has published a list of verified software tools that are compliant with CSA F280-12.
- Using verified software gives both the HVAC contractor and those who rely on the outputs from the software confidence that the tool can generate correct results in line with the CSA standard.

Canada

wrightsoft

HeatCAD

Ressources naturelles latural Resources Canada

dä

F280 compliant software listing

F280-12 Software Verified according to the procedure set out in F280-12, Section 8.

COMPANY NAME	SOFTWARE NAME	ROOM BY ROOM	WHOLE HOUSE	CONDITIONS	WEBSITE
Building Technology Services	Building Tech F280	Q	Q	Click Here	${f B}$ uilding ${f T}$ ech
Avenir Software Inc	HeatCAD/LoopCAD	Ø	Ø	Click Here	HeatCAD LoopCAD
Thermal Environmental Comfort Association	Teca Heat Loss & Heat Gain Calculator	Ø	Ø	Click Here	Tecca
Volta Research Inc	Volta Snap		Ø	Click Here	VOITA SNAP
MiTek Inc	Right-Suite Universal	Ø	Ø	Click Here	
Sustainable HVAC Design Inc	Sustainable HVAC F280	Ø	Ø	Click Here	
McCallum HVAC Design Inc	Mecha F280	Q	Q	Click Here	MCCALLUM HVAC DESIGN INC design excellence with on time delivery

Canada

Natural Resources Ressources naturelles Canada

UNCLASSIFIED - NON CLASS

Let's look at our case study home (Climate Zone 5)

BUILDER GOALS:

Canada

- □ Achieve NZ standard
- □ Improve home thermal comfort
- □ Manage costs

NET ZERO SPECIFICATIONSAir Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area	HOME CHARACTERISTICS						
Zone 2 (Main floor):9,535 BTU/h9,983 BTU/hZone 3 (Second Floor):9,383 BTU/h10,002 BTU/h29,933 BTU/h (2.49 Ton)27,441 BTU/h (2.29 Ton)NET ZERO SPECIFICATIONSNET ZERO SPECIFICATIONSAir Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area		Heating load	Cooling Load				
Zone 3 (Second Floor):9,383 BTU/h10,002 BTU/h29,933 BTU/h (2.49 Ton)27,441 BTU/h (2.29 Ton)NET ZERO SPECIFICATIONSAir Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area	Zone 1 (Basement):	11,076 BTU/h 7,756 BTU/h					
29,933 BTU/h (2.49 Ton)27,441 BTU/h (2.29 Ton)NET ZERO SPECIFICATIONSAir Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area	Zone 2 (Main floor):	9,535 BTU/h	9,983 BTU/h				
NET ZERO SPECIFICATIONSAir Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area	Zone 3 (Second Floor):	9,383 BTU/h 10,002 BTU/h					
Air Tightness1.5 ACH50AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area		29,933 BTU/h (2.49 Ton)	27,441 BTU/h (2.29 Ton)				
AtticR60WallsR22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall area	NET ZERO SPECIFICATIONS						
Ventilation 75% Efficiency-rikv Heating & Air Conditioning Cold Climate Air Source Heat Pump Design Temperature -23°C	Attic Walls Basement Exposed Floor Windows Ventilation Heating & Air Conditioning	R60 R22+10continuous R22+10continuous R40 Double R4, 0.6 SHGC, 10.6% of wall area 75% Efficiency-HRV					

UANAE CUADACTEDICTICS

Natural Resources **Ressources naturelles** Canada

Load Calculations – Rule-Of-Thumb vs. F280-12

RULES OF THUMB?

From Google searched websites for BC interior

"The generally accepted BTU per square foot heating rule of thumb ranges from **30 BTU to 60 BTU per square foot**. That's a wide difference, essential one furnace being twice as large as the other, so the size factors are discussed to help you narrow down the right BTUs needed for your home..."

"... a 400 to 550 square foot room is best served by an air conditioner with between 10,000 BTU and 12,000 BTU, while a room that's only 250 square feet would probably be fine with an 8,000 BTU unit."

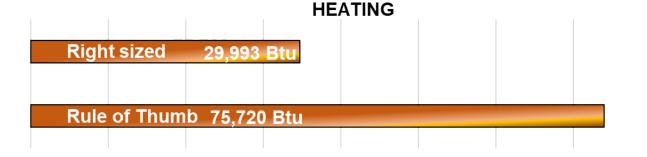
(28 BTU per square foot)

Hea	at pump size g —	uide
Home size (in square feet)	Heat pump size (in tons)	Heat pump size (in BTUs)
500 sq. ft	1 ton	12,000 BTUs
1,000 sq. ft	2 tons	24,000 BTUs
1,500 sq. ft	3 tons	36,000 BTUs
2,000 sq. ft	4 tons	48,000 BTUs
2,500 sq. ft	5 tons	60,000 BTUs

(22 BTU per square foot)

"If you had to calculate the size of the HVAC system on the size of the space, you'd have to assign around 25 BTU per square foot of living area. Room height, windows, shade, and insulation are other factors that dictate what BTU rating you require for your home."

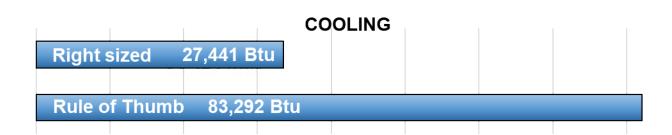
Natural Resources Ressources naturelles Canada Canada


Load Calculations – Rule-Of-Thumb vs. F280-12

Example

3,786 ft² house Kamloops, Climate Zone 5

Space Heating Design Loads


- Applying a 'rule of thumb' @ 20 Btu/h per sq. ft.
- **CSA F280**

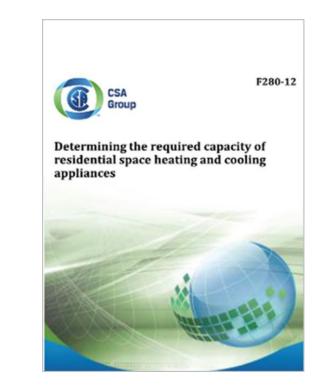
Space Cooling Design Loads

- Applying a 'rule of thumb' @ 22 Btu/h per sq. ft.
- **CSA F280**

Canada

Natural Resources Ressources naturelles Canada

Load Calculations – Importance of Right-Sizing


CALCULATE... DON'T GUESS

CAN/CSA F280-12: BC Building Code (Section 9.33.5)

Making sure this standard is used will:

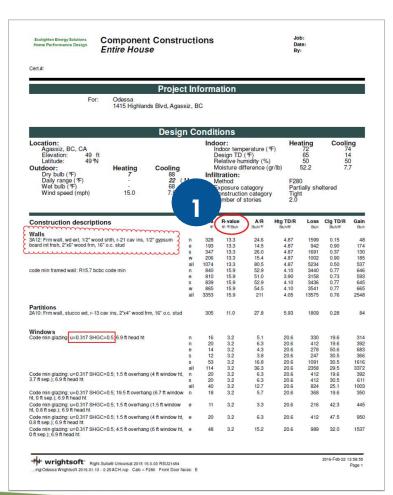
- ✓ Ensure comfort & Indoor Air Quality
- ✓ Optimize equipment efficiency & longevity
- ✓ Reduce HVAC system upfront and operating costs
- \checkmark Ensure compliance with code
- ✓ Reduce liability risks

Canada

Load Calculations – Builder Checklist

HVAC Designer will require the following to ensure a thorough and accurate Load Calculation.

- 1. Construction documents that include:
 - Plans with orientation, sections & elevations
 - Assemblies with effective R-Values
 - Window sizes, USI-values, and SHGC values
- **2.** Airtightness requirement $(2.5 \text{ ACH}_{50}, 1.5 \text{ ACH}_{50}, \text{ etc.})$
- **3. Energy Model documents**


Canada

4. Any desired iterations and alternatives to explore

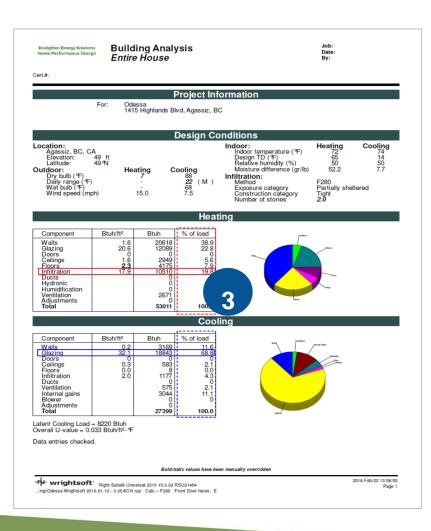
Calculation CA Verse Induced in conditions 72.15 Newshare 52.15 de walls 10 m soil 10.25 Newshare 52.15 10 10 10 10 10 10 10 10 10 10 10 10 10	Hand Voltag (DODE) Observe 5 Vite: Imported (4P) Cooling design conditions Outroving: 84.1% Notive: 74.4% Lander: 49.1% Strage: Below grade walls Below G
C Calculation Calculation CA Writed Induced In conditions 72 F Mensioner 52 F de walls 6 In soil In soil RC MA2ters HANDEAN floors	Lie Proteinabile Lie South Company South Company Ministration Address of the South Company Ministration Lipit Dool shinking Ministration Dool on the South Company Dates was affected with an affected with South Address was affected with an affected with a affected with South Address was affected with a affected with South Address was affected with South Add
C Calculation Calculation CA Writed Induced In conditions 72 F Mensioner 52 F de walls 6 In soil In soil RC MA2ters HANDEAN floors	Protocols Postinacia So Based on Forthamp South Market Millson Anameth No Market Millson Weterson ACIBS - 1.00 Anameth No Market Millson Wetersona Light Coal shedding Itemportal (PP) Cooling design conditions Outro time: 84.4* Dates time: 74.7* Link 42.74 Strage Dates time: 84.4* Date time: 74.7* Link 42.74 Strage Dates time: 100.1* Date time: 74.7* Date time: 74.9* Date time: 74.4* Date time: 74.4* <t< td=""></t<>
Calculation CA Verses Induced n conditions 72 °F Memory 52 °F de walls en n soil 82 Magnes H2-10 BA floors	Instance Fortham South Answell No Mighters Acceleration Answell No Mighters Light Doal shinking No No Inter video Dono Occents 5 Unit Imposts (JP) Occents 5 Dataset Bolow grade Storage 5 Dataset Bolow grade Bolow grade Storage Detail Decover share difficit Matrix Holes to the storage Storage Detail Decover share difficit Matrix Holes to the storage Storage Decover share difficit Decover share difficit Matrix Holes to the storage Storage Decover share difficit Decover share difficit Matrix Holes to the storage Storage Decover share difficit Storage Decover share difficit Decover share difficit Decover share difficit Matrix Holes to the storage Storage Decover share difficit Decover share difficit Matrix Holes to the storage Storage Decover share difficit Decover shar
CA Verland Included n conditions 72 °F Menselwer 52 °F de walls el m soil an soil an unagene HA-torison floors	Forthame South Answell No Wetersmin Light boat shelding Answell No Unit Introduction Conjung design conditions Strapping Outcome: 84 °F Hataria Yield '49 °N Strapping Dates were 84 °F Hataria Yield '49 °N Strapping Dates were 84 °F Hataria Yield '49 °N Strapping Dates were 84 °F Hataria Hataria Strapping Date 198 °F Strapping Hataria Hataria Hataria Strapping Strapping Strapping Strapping Hataria Hataria Strapping Strapping Strapping Strapping Strapping Strapping Strapping Strapping Strapping Strapping Strapping
n conditions 72 °F Ukerselwer 52 °F de walls * * * * * * * * * * * * * * *	Hrightens ACHSO + 100 Assame® No Wertensme Light Dool shinking Oncerts 5 Unit: Imported (JP) Oncerts 5 Outcome 84 Fibro Hange 1000 Drougets 5 Date time B4 Fibro Hange 24 /F Lander: 49 /N Stronge BeA Fibro Hange Below grade walls B B 500,1 Storet 53 BO, cone han, will R07, MR2016 * 5
n conditions 72 °F Ukerselwer 52 °F de walls * * * * * * * * * * * * * * *	Hrightens ACHSO + 100 Assame® No Wertensme Light Dool shinking Oncerts 5 Unit: Imported (JP) Oncerts 5 Outcome 84 Fibro Hange 1000 Drougets 5 Date time B4 Fibro Hange 24 /F Lander: 49 /N Stronge BeA Fibro Hange Below grade walls B B 500,1 Storet 53 BO, cone han, will R07, MR2016 * 5
n conditions 72 °F Ukerselwer 52 °F de walls * * * * * * * * * * * * * * *	Byte Coal shutching Total Table: Imported (4P) Oncourting 6 Table: Imported (4P) Oncourting 6 Colong design conditions Delaware 6 6 Colong design conditions Below grade walls 6 6 Statistics: 74 % Linke: 49 % Strape: 1 Below grade walls Below grade walls 6
n conditions 72 °F Ukerselwer 52 °F de walls * * * * * * * * * * * * * * *	Hand Volking (Doce) Oncernition 5 Vike Imported (EP) Cooling design conditions 5 Outloome 84 *F Note way: 74 *F Lander: 49 *N Strage Sector way: 84 *F Note way: 74 *F Lander: 49 *N Strage Sector way: 84 *F Note way: 74 *F Lander: 49 *N Strage Sector way: 84 *F Note way: 74 *F Lander: 49 *N Strage Sector way: 84 *F Note way: 84 * Strage way: Strage Sector way: 84 *F Note *Strage way: Note *Strage way: Strage way:
72 °F Menselwer 52 °F de walls el m soil 82 MARIE HANDEA floors	Opening design conditions Outcome 84 *F Notice Storge Below grade walls Below grade walls Storge Set 4: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 4: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 5: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 5: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 5: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 5: 500,1 Bent 53 B5, one hats, wilf-807, MR2016 * Storge Set 6: Ceilings Storge Storge Set 6: Set 6: Storge Storge Set 7: Storge Storge Storge
72 °F Hersolwe, 52 °F de walls ef m soil an soil an viagnes HA-torise floors	Output weight Part Instruction 74 - F Lature 49 - N Stronge Below grade wealls Below grad wealls Below grade wealls
de walls si n soil na suitagues Hanstein floors	Below grade walls 194.4: BOR, 1 Borr, 4.51 BC, concretation and Rolf, 44 (2016); 6.4 194.8: BOR, 1 Borr, 21 BC, concretation and Rolf, 44 (2016); 6.4 194.8: BOR, 1 Borr, 21 BC, concretation and Rolf, 44 (2016); 6.4 194.6: BOR, 1 Borr, 21 BC, concretation and Rolf, 44 (2016); 6.4 Collings Collings 194.8: Borr, 21 BC, 21 denoise (21 Rolf); 23 44 194.7: Collings 194.8: Borr, 21 BC, 21 denoise (21 Rolf); 23 44 194.9: Doors
e n soil 22 Martee Kantee floors	Tape A. BOB, 1: Server, 43: BID, core: https://arXiv.ore. Tape B. BOB, 1: Server, 53: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 53: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 53: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. BOB, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. Bob, 1: Server, 57: BID, core: https://arXiv.ore. Tape C. Bob, 2: Server, 57: BID, core: https://arXiv.ore. Tape C. Bob, 2: Server, 57: BID, core: https://arXiv.ore. Tape C. Bob, 2: Server, 57: BID, core: BiD, co
n soil ar darach Raisrba floors	194 R 608,1: Sevet 533 BD, core hids, width27,148 2016;6 196 C 1001,7: Sevet 748 55, core hids, width27,147 2016;6 196 D 201,7: Sevet 748 55, core hids, width27,147 2016;7 196 D 201,7: Sevet 748 55, core hids, width27,147 2016;7 196 D 201,7: Sevet 748 55, core hids, width27,147 2016;7 196 D 201,7: Sevet 748 55, core hids, width27,147 2016;7 196 D Ceilings 196 A Gelg (18,127, Cehroleg (18,127) 196 B 396 C 196 C Doors
ar, whose the tenter	SARC ROB(1) Bornt 71 BC core Holes will PSP: UH-20 Hole TOR D ROB(1) Bornt 11 BC core Holes will PSP: UH-20 Hole Ceilings Stell A Gale (157 S2) Cole railing (157 S2) System Doors
ar, whose the tenter	Syk C BOR, 1: Borry, 74 BC, core Index, wall 76 27, ULF 26 Ser 6 Syk D BOR, 1: Borry, 54 BC, core Index, wall 76 27, ULF 26 Ser 6 Ceilings Syk A Gale (157 327, Gale rially, UF 20 27) Syk B Borr, 1: Borr, 2: Gale rially, UF 20 27) Syk B Borr, 2: Gale rially, UF 20 27) Syk B Borr, 2: Gale rially, UF 20 27) Deal Borr, 2: Gale rially, UF 20 27)
ar, whose the tenter	1940 801 1 Borr H BC one Han with 20 A Borr Han with 20 A Borr Han With 20
ar, whose the tenter	Ceilings 9x-k Gate (FR 307 Catricates (FR 307) 9x B 5x C 5x C Doors
ar, whose the tenter	944 Galg (FR 327 Can calling (FR 327) 544 B 544 D Doors
floors	tyk 8 tyk 0 Doors
	5440 Doors
	Doors
	Stell A ADE IN - DOO RE-50 (Doo EE RE-50)
	SALE
ows	Stell
(1990 det (9400421) 17 toletarg (13 t	Stell
(NRC elector(SHGC+021), 17.8 overhang (4.8	Skylights
NPPC asso SHGC-0211 10 Koverhang if it amon	Stell Suger US 2434yp04 Studen US 213 SHCC040
	Ste B
erformed by	T
	4
utions Ltd.	-
	-
	-
00	-
	-
	-
	Halloute 15-584
	CHIEC and SECOND 1116 summary 21 CHIEC and SECOND 211 10 summary 21 analysis enformed by Listons Lki. BC BC

Load Calculations – Builder Checklist

	Short For e House	m		Job: Date: By:	
.#:					
	D		otion		
For: Od	essa	roject Inform	lation		
	essa 15 Highlands Blv	d, Agassiz, BC			
		esign Inform	The second	Infiltration	
Outside db (%)	Htg 7	88 Methor		Infiltration	F280
Inside db (%)	72		ure category	Partially s	
Design TD (%) Daily range	65		uction category or of stories		Tight 2.0
Inside humidity (%) Moisture difference (ar/lb	50	50 8			
Moistare difference (grinb) 52	0			
HEATING EQU			COOLI	NG EQUIPMEN	т
Make Generic		Mal			
Trade Model AFUE 96		Tra		0	
AHRI ref		Coi			
Efficiency	96 AFUE		RIref	12.8 EER. 15 SEE	B
Heating input	55220 Btu	h Ser	sible cooling		99 Btuh
Heating output Temperature rise	53011 Btu 38 9	h Lat	ent cooling ling	3914	42 Btuh 41 Btuh
Actual air flow	1305 cfm		low		05 cfm
Air flow factor Static pressure	0.026 cfm 0 in F		or	0.04	19 cfm/Btuh 0 in H2O
Space thermostat	0 mi		le heat ratio	0.7	
ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF
	(ft²)	(Btuh)	(Btuh)	(cfm)	(cfm)
Bedroom 5 Bedroom 4	211 188	3650 1911	1629 667	95 50	79 32
Bedroom 4 Rec Room	649	7250	3311	188	161
B - Stairs/Hall	126	492	11	13	1
Mech Room	68	593	23	15	1
B - Bath Hobby Room	59 126	226	446	6	0
Great Room	189	4428	4151	115	202
Kitchen	247	1609	2192	42	107
Pantry Dining Room	58	2832	0	0 73	0
Master Bedroom	221	3934	3082	102	150
Master WIC Master Ensuite	88	724	71	19	3
Master Ensuite Powder	109 36	1537 886	570 390	40 23	28 19
Foyer/Stairs	165	2492	1319	65	64
	Bold/Ital	ic values have been man	uarry overridden		

...inglOdessa Wrightsoft 2016.01.13 - 0.25 ACH.rup Calc = F280 Front Door faces: I

What to review and check once calculations are completed:


- <u>Check</u> that building assemblies and related Rvalues & USI-values make sense.
- 2. <u>Review</u> Total Heat Loss & Total Heat Gain.

Natural Resources Canada

Ressources naturelles <u>Can</u>ada

Load Calculations – Builder Checklist

What to review and check once calculations are completed:

- **Look** at what has most impact on your Design 1. Heat Loss/Gain.
- 2. <u>Review</u> your upgrade options
- 3. <u>Select</u> your final specifications

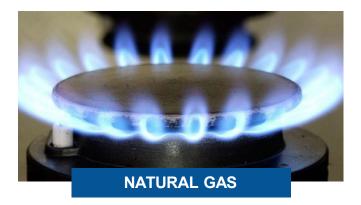
A brief summary report will be provided with your chosen specifications.

Canada

Natural Resources Ressources naturelles Canada

Energy Performance/Climate Targets

Energy performance/climate targets need to be confirmed upfront as it may limit the energy source and equipment selection options.


Energy Sources

Canada

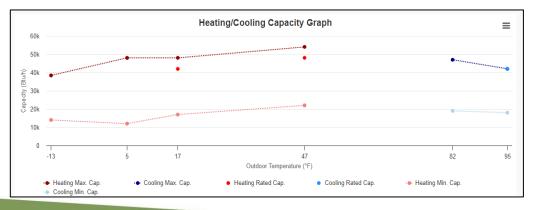
Before deciding on an energy source, consider the following:

- Availability and suitability of the energy source
- Operating costs and benefits
- Homeowner interests and motivations
- Accelerating climate change policies and environmental impacts

When Discovery, Energy Evaluation & Load Calculations are completed, equipment can then be selected based on the following criteria:

- Budget
- Supply chain and product support from suppliers and installers for the project location
- Space Restrictions, Noise Level, Electrical Service Requirements, etc.
- Efficiency & Capacity from equipment specifications (e.g., efficiency, capacity & fan performance curves)

UNCLASSIFIED - NON CLASS

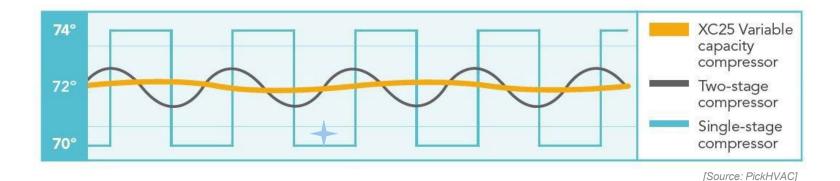

Equipment Selection

Selecting the appropriate equipment requires technical competence beyond sales convenience.

MITSUBISHI ELECTRIC P-Series Central Air Conditioning Heat Pump (HP) Singlezone Ducted, Centrally Ducted AHRI Cert #*: 211259282 Outdoor Unit Model #*: PUZ-HA42NKA1 Indoor Model #*: PVA-A42AA* Maximum Heating Capacity (Btu/h) @5°F: 48,000

- Rated Heating Capacity (Btu/h) @47°F⁺: 48,000
- Rated Cooling Capacity (Btu/h) @95°F*: 42,000

Canada

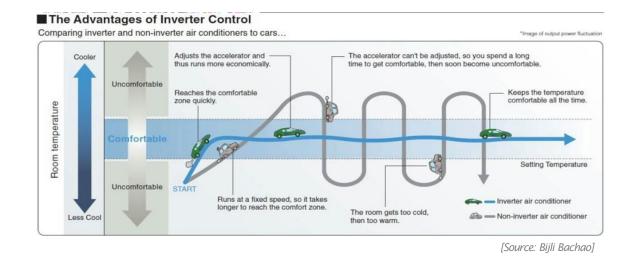

Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated ⁺	Max
Cooling 9	95°F	80°F	Btu/h*	18,000	42,000	42,000
			kW	1.78	4.27	4.27
			COP	2.96	2.88	2.88
Cooling	82°F	80°F	Btu/h*	19,000	-	47,000
			kW	1.3	-21	4.2
			COP	4.28	-	3.28
Heating 47°F	47°F	70°F	Btu/h*	22,000	48,000	5 <mark>4</mark> ,000
			kW	1.59	4.01	4.87
			COP	4.06	3.51	3.25
Heating 17°	17°F	70°F	Btu/h*	17,000	42,000	48,000
			kW	1.85	4.99	6.7
			COP	2.69	2.47	2.1
Heating 5°F	5°F	70°F	Btu/h*	12,000	2	48,000
			kW	3.06	171	7.36
			СОР	1.15	-	<mark>1.9</mark> 1
Heating -1	-13°F	70°F	Btu/h*	14,000	-	38,400
			kW	0.99	-	7.24
			COP	4.14	-	1.55

Information Ta	bles
Brand	MITSUBISHI ELECTRIC
Series	P-Series
Ducting Configuration	Singlezone Ducted, Centrally Ducted
AHRI Certificate # ⁺	211259282
Outdoor Unit Model #⁺	PUZ-HA42NKA1
Indoor Model #*	PVA-A42AA*
Indoor Unit Type⁺	Mini-Splits
Furnace Model ⁺ #	
EER⁺	10.6
SEER ⁺	15.3
HSPF (Region IV)⁺	11
EER2 ⁺	9.8
SEER2*	15.4
HSPF2 (Region IV)⁺	9.3
HSPF2 (Region V)	7.9
ENERGY STAR V6.1	×
ENERGY STAR V6.1 Cold Climate	×

Natural Resources Ressources naturelles Canada

Conventional Equipment

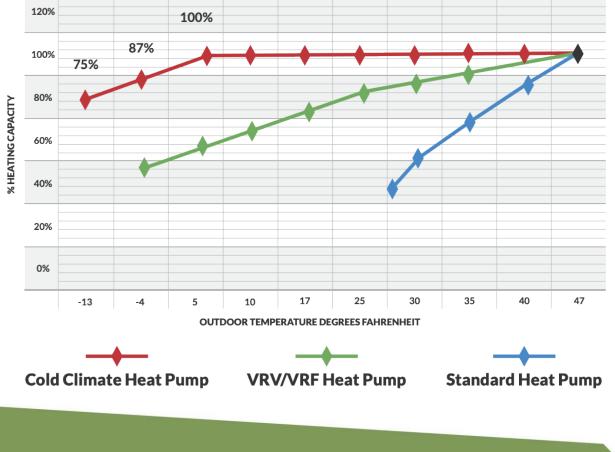
Single-Stage:


- Operates on a full-on or full-off schedule and works at 100% capacity all the time.
- Most affordable option but efficiency is the lowest.

Two-Stage:

- Offers better control and performance with higher efficiency than single-stage equipment.
- Works at 60% 65% capacity for 80% of the time.

High-Performance Equipment


Variable Refrigerant Flow (VRF)/Variable Refrigerant Volume (VRV)

- Can modulate and operates at the speed necessary to meet demand.
- 40% 50% higher efficiency than conventional equipment.
- Capable of serving multiple zones with a single outdoor unit.

Canada

Natural Resources Ressources naturelles Canada

Canada

High-Performance Equipment

Cold Climate Heat Pump (CCHP):

- Combines inverter-driven variable-speed compressor with newer technologies.
- CCHPs can operate down to -15°C or even as low as -30°C without significantly losing its capacity.

UNCLASSIFIED - NON CLASS

CCHPs can meet higher heating demand, but they also come with higher installation costs.

da

Equipment Selection

All Electric Option and Dual Fuel/Hybrid Technologies

What are the main differences?

	All Electric	Dual Fuel/Hybrid
Primary Heat	Heat Pump	Heat Pump
Auxiliary Heat	Electric (COP 1 – 100% efficient)	Gas Backup (efficiency less than 100%)
Costs	Dependent on regional energy costs, equipment quality, capacity & efficiency	Dependent on regional energy costs, equipment quality, capacity & efficiency
GHG Emissions	Minimal (Depending on source, ie. Nuclear, Hydro, Natural Gas, Coal, etc.)	Can be significant depending on the amount of gas backup used.
Other Considerations	May require larger electric panel/service capacity	As auxiliary it is sized to full load, therefore can function as back-up heat if heat pump fails. Easier to connect to back-up generator

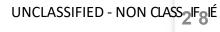
Canada

Natural Resources Ressources naturelles Canada

F280–What Have We Learned

01 F280 Load Calculations

- CSA F280 heat loss/gain analysis will right-size heating and cooling systems, improve comfort, and can reduce build cost. Getting accurate information in construction documents is critical to avoiding issues with improper equipment sizing.
- Code compliant F280-12 load calculations is the foundation on which all other HVAC decisions are dependent. Builders need to take ownership of their load calculations.


02 Equipment Selection

- Selecting appropriate equipment is a critical step in its own right and requires technical competence from an HVAC designer.
- Criteria for equipment options will include considerations for budget, product support, equipment performance specifications.

Canada

Ressources naturelles latural Resources Canada

Industry transition to low-GWP refrigerants

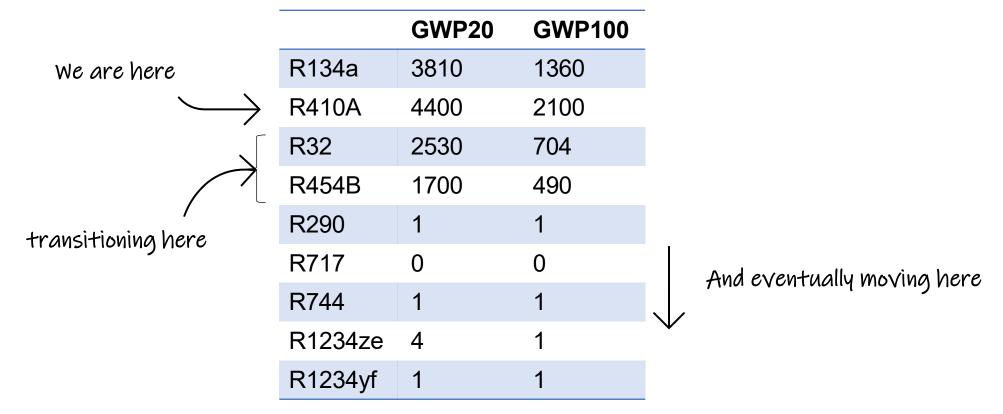
Presented by: Jérémie Léger – Local Energy Efficiency Partnerships

CE-O's Low Global Warming Potential (GWP) Cold Climate Heat Pumps R&D Project

Technology development

Guides, tools, resource development

Contacts for more information:

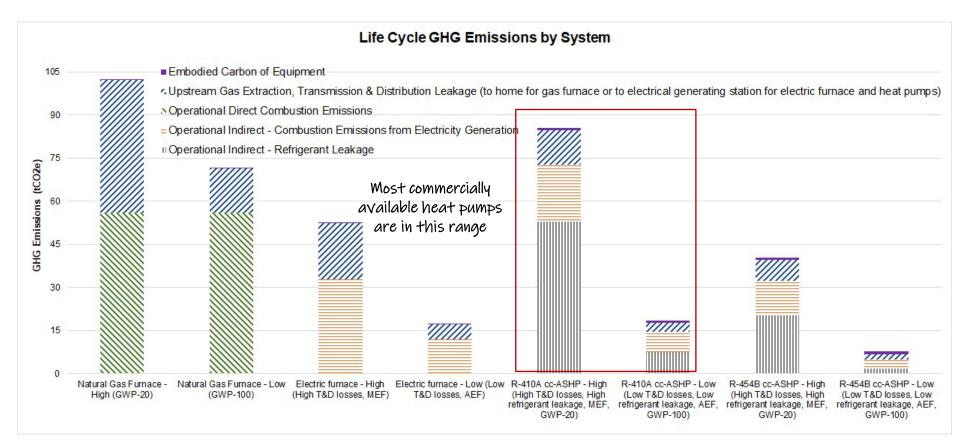

Jeremy Sager jeremie.sager@nrcan-rncan.gc.ca

Charles Mougeot Charles.Mougeot@nrcan-rncan.gc.ca

What you need to know

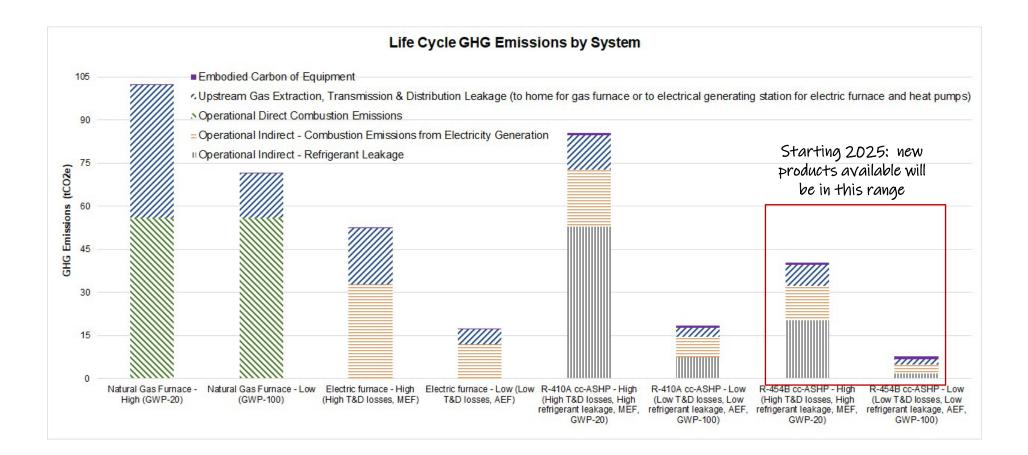
2025 transition to new, lower-GWP refrigerants for heat pumps is coming

United Nations Environment Programme. Montreal Protocol on the Substances That Deplete the Ozone Layer: 2018 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical


Options Comittee; United Nations: Geneva, Swietzerland, 2018.

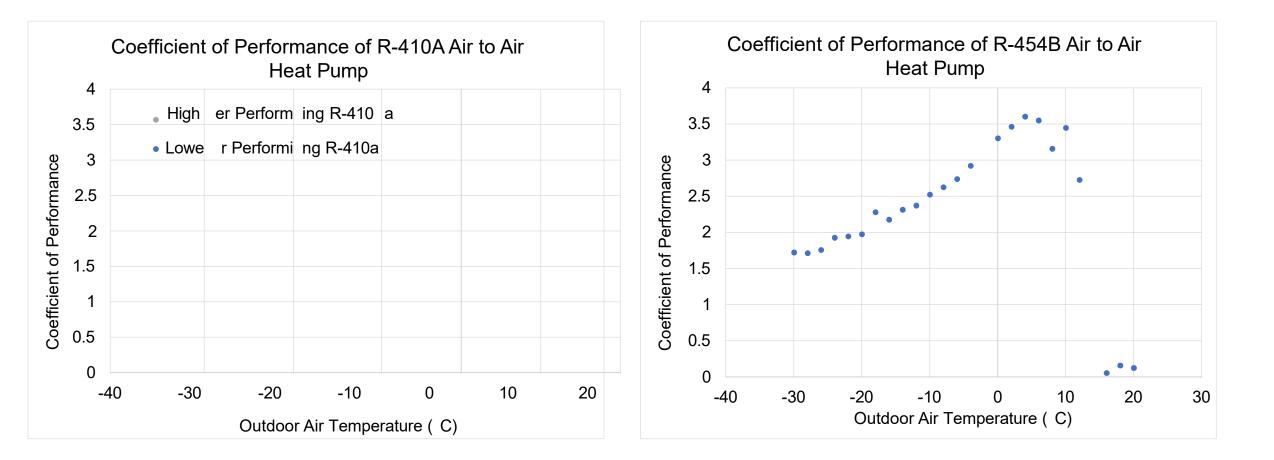
Canada

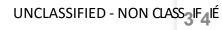
The carbon footprint of most mechanical systems is operational carbon – leakage or combustion.


Note: Modeled using an archetype home at the CCHT Research Facility using Ottawa climate data

Natural Resources Ressources naturelles Canada Canada

The transition to lower GWP refrigerants halves the operational carbon emissions of heat pumps


anada


Natural Resources Ressources naturelles Canada

Canada

New refrigerant products demonstrated higher COPs in lab testing results

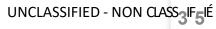
- Performance of two 10.6 kW (3 ton) cc-ASHPs evaluated during controlled field trial
- Developed detailed performance maps for systems that used R-410A and R-454B refrigerants

New Refrigerants is Good News!

- 1. CE-O labs have measured higher COP
- 2. Colder operating temperature
- 3. Lower GWP from leakage

Contacts for more information:

Jeremy Sager jeremie.sager@nrcan-rncan.gc.ca


Charles Mougeot

Charles.Mougeot@nrcan-rncan.gc.ca

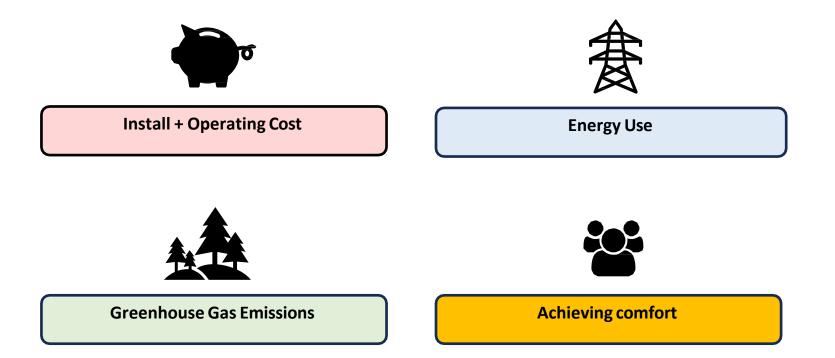
latural Resources Ressources naturelles Canada Canada

Envelopes and product availability

How do heating & cooling loads affect available heat pump options?

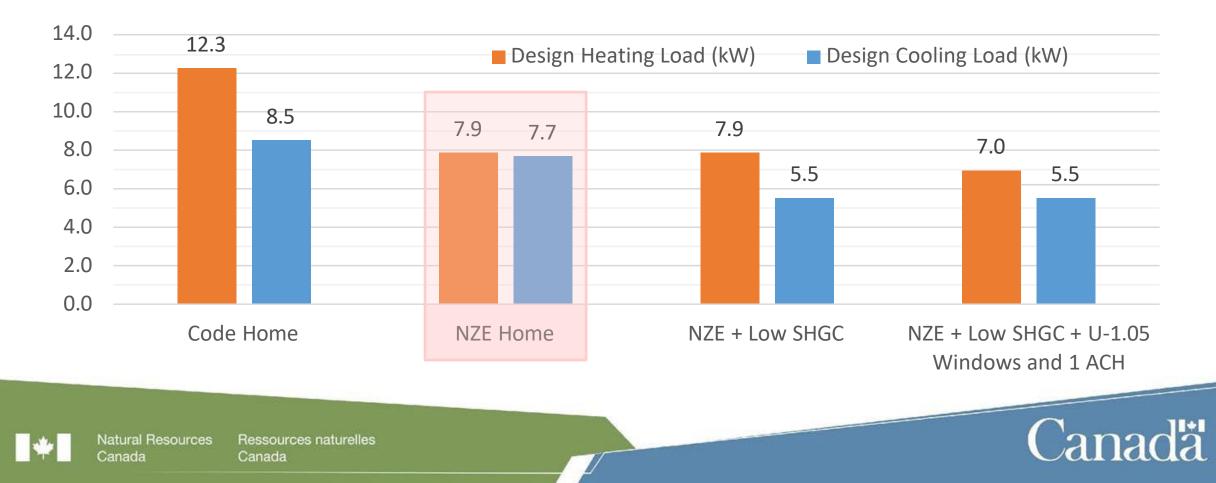
Canada

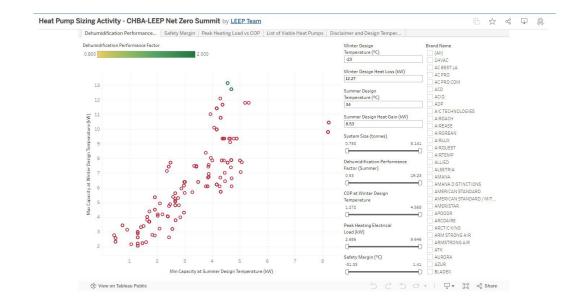
Vatural Resources Ressources naturelles Canada



Knowing your Loads is Important for Design, but What About the Impact on Available Systems?

- **01** Does the heat loss and heat gain effect availability of heat pump?
- **02** Can we size smaller heat pumps to meet the full load?
- **03** How can the envelope packages be optimized to increase comfort and energy performance in relation with the available heat pumps


Why this is Important



Using the Following Envelope Choices

UNCLASSIFIED - NON CLASSIFIÉ Let's use Newly Developed Heat Pump Tool to **Navigate the NEEP Database**

Can follow along using this tool (better on laptop or tablet)

Natural Resources Ressources naturelles Canada

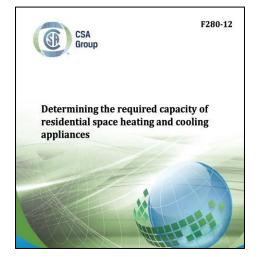
Canada

For each envelope package we will...

- Model the packages by updating the design heat loss and heat gain in the tool
- Look at the following:
 - Number of systems available
 - System size (Tons)
 - Efficiency (**COP** at design temperature)
 - Dehumidification performance factor (ratio of cooling load to min cooling capacity)
- Use the tool filters to find a good heat pump for each case

What typically limits your heat pump product selection and suitability?

(i) Start presenting to display the poll results on this slide.


Dehumidification Performance Factor

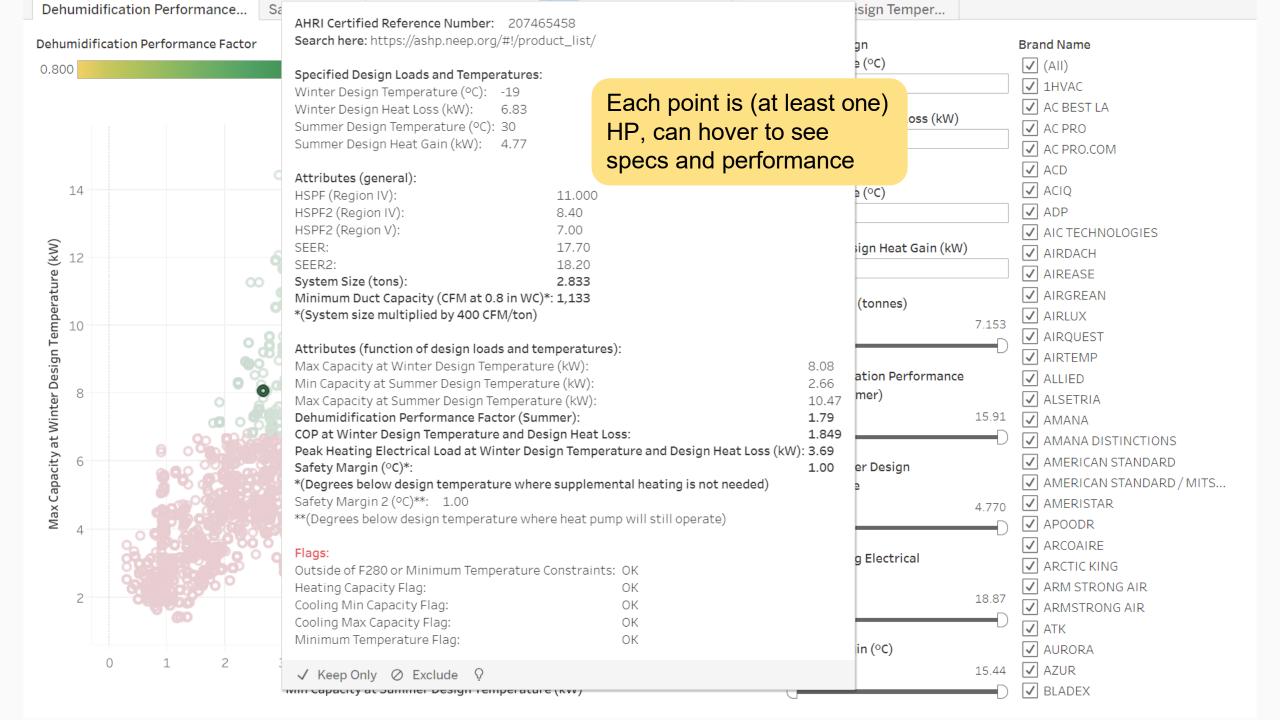
Ratio of Minimum Cooling Capacity to Design Heat Gain

Recommended range of sizing AC 80% to 125% of DHG

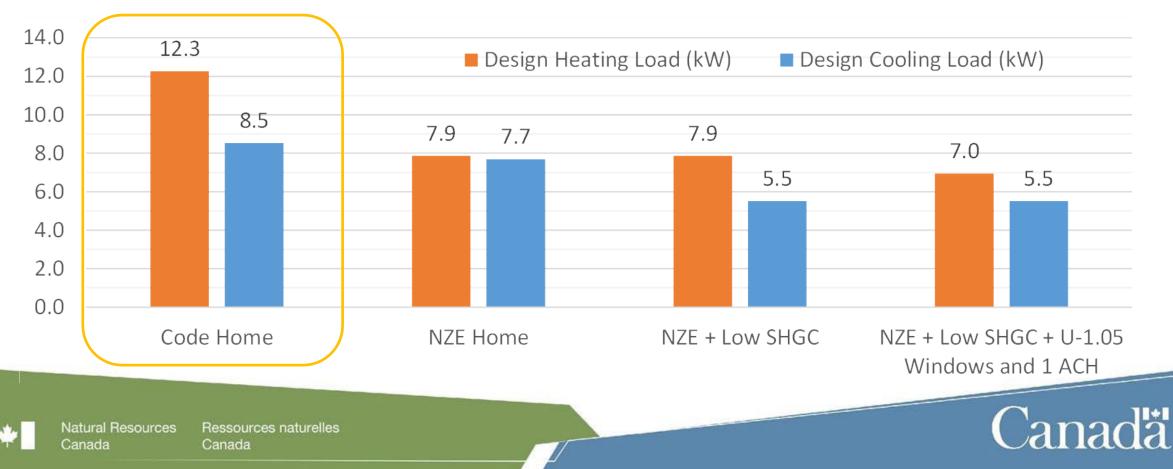
Reminder: What happens if we oversize cooling

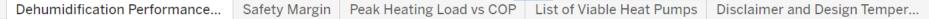
The higher DPF the better the dehumidification performance

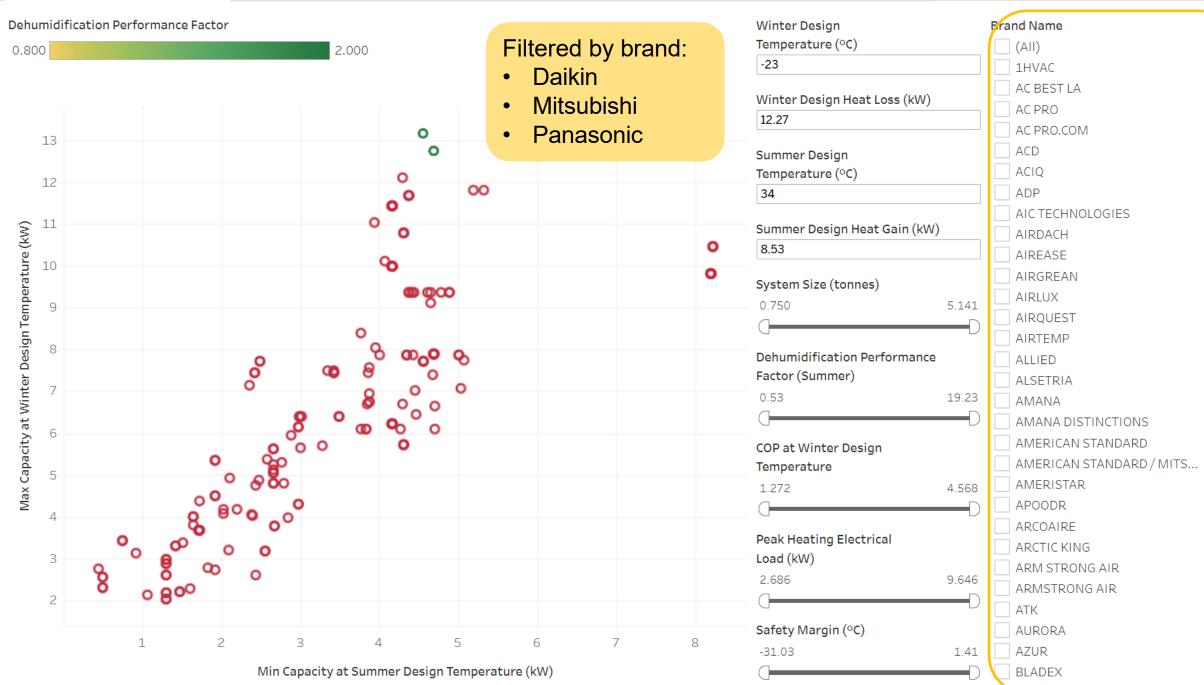


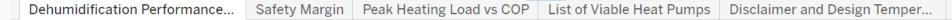


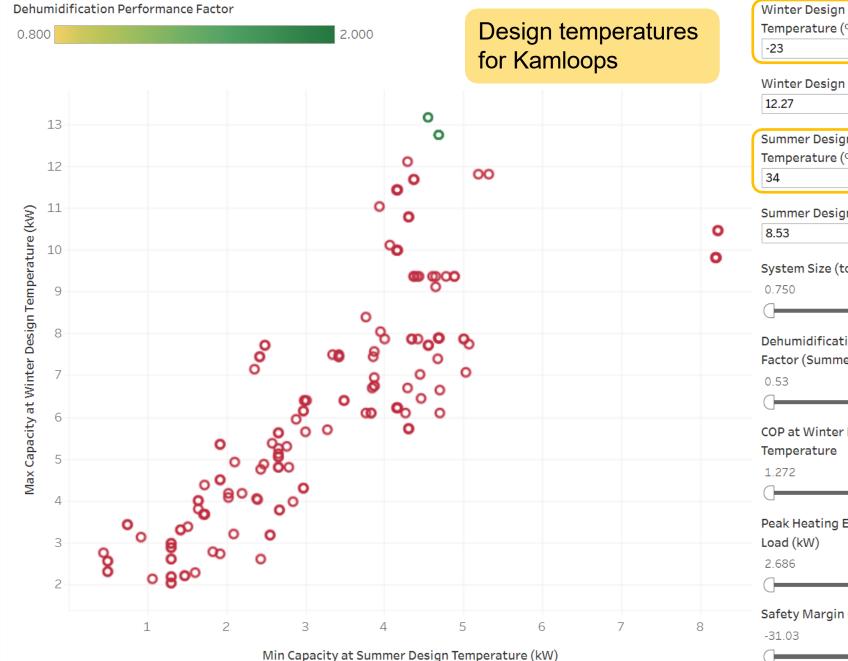
 Ressources naturelles Canada

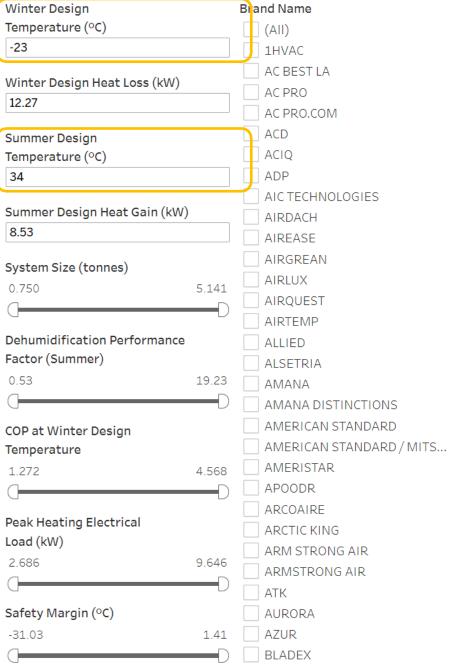


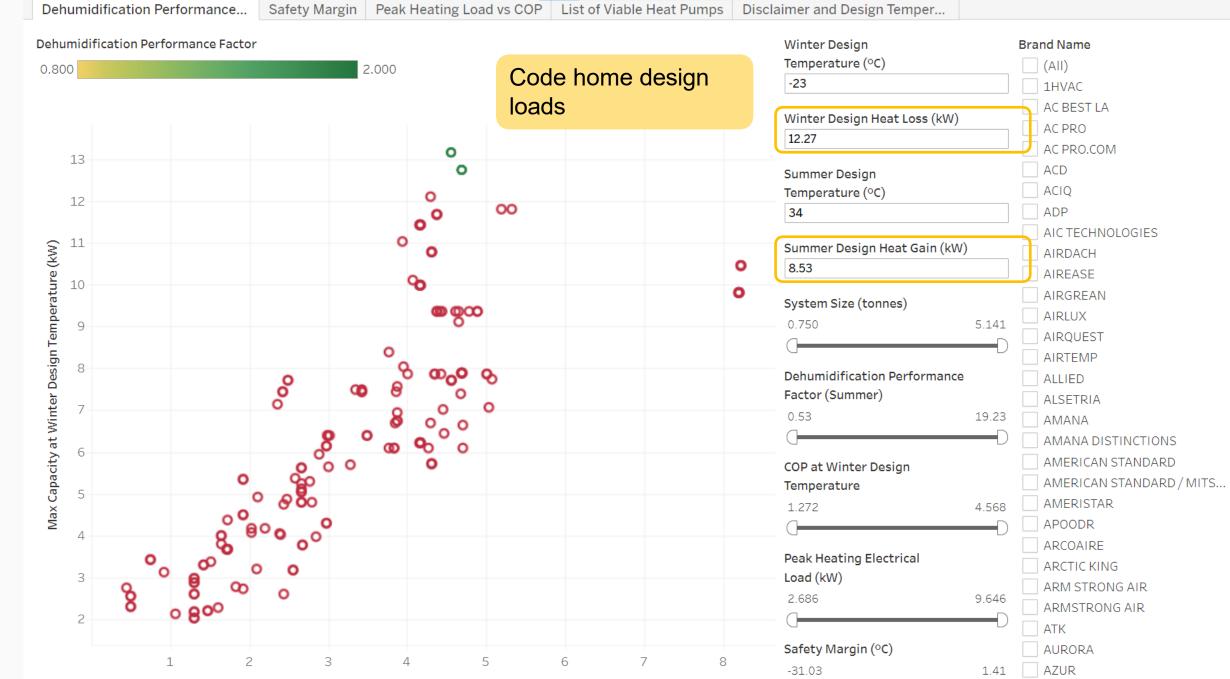

Dehumidification Performance Safety Margin Peak	Heating Load vs COP List of Viable Heat Pumps D	isclaimer and Design Temper	
		Winter Design	Brand Name
Viable Heat Pumps		Temperature (°C)	✓ (All)
AHRI Certified Reference Number Info Box		-19	✓ (AII) ✓ 1HVAC
8654212			✓ AC BEST LA
8693473	After filtering, can go to list of	Winter Design Heat Loss (kW)	✓ AC PRO
8693475	viable heat pumps (that can	6.83	✓ AC PRO.COM
8693476	• • •	Current Decier	✓ ACD
8693478	meet 100% of the loads) tab	Summer Design Temperature (°C)	✓ ACIQ
8693479		30	✓ ADP
8693480	Can compare all applicable		✓ AIC TECHNOLOGIES
8693481		Summer Design Heat Gain (kW)	✓ AIRDACH
8796414	systems, and/or do more	4.77	✓ AIREASE
8908615	filtering		✓ AIRGREAN
8908616		System Size (tonnes)	✓ AIRLUX
8912450		1.833 7.153	✓ AIRQUEST
8912454			✓ AIRTEMP
9962519		Dehumidification Performance	✓ ALLIED
9962520		Factor (Summer)	✓ ALSETRIA
9962521		0.806 2.642	AMANA
9962522		0D	✓ AMANA DISTINCTIONS
9962523		COP at Winter Design	AMERICAN STANDARD
9962524		Temperature	AMERICAN STANDARD / MITS
10070561		1.242 3.955	✓ AMERISTAR
10147096		0D	APOODR
10147097		Dook Hooting Electrical	ARCOAIRE
10271657		Peak Heating Electrical Load (kW)	ARCTIC KING
10271659		1.727 5.500	ARM STRONG AIR
10445374 I0445376 I		D	
			ATK
10445377 I0514710		Safety Margin (°C)	AURORA
10514710		0.01 15.44	
		()	BLADEX

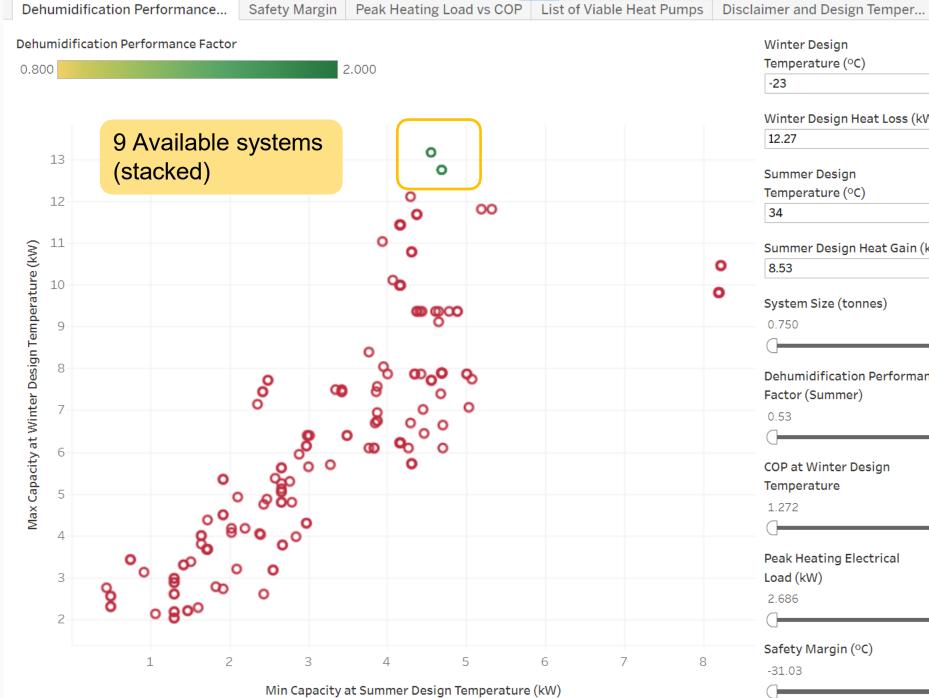

Viable Heat Pumps AHR Cortified Reference Number: 893473 Brand Name AHR Cortified Reference Number Info too 654212 Sarch hear parg/#/product. list/ B653473 Summer Design Temperature (°C): 1.9 863473 Summer Design Heat Loss (W): 6.33 8633476 Attributes (general): 8633476 HSPF (Region IV): 8633476 Attributes (general): 8633476 HSPF (Region IV): 8633473 Strimmer Design Temperature (°C): 30 8633476 HSPF (Region IV): 8633473 HSPF (Region IV): 8633473 HSPF (Region IV): 8633481 SEER: 8633481 SEER: 8633481 SEER: 8908615 Minimum Duct Capacity (CH at 0.5 in MC)*: 2.00 **(System Size (form): 4.999 Minicapacity at Winter Design Temperature (W): 5.274 8912454 Mine Capacity at Winter Design Temperature (W): 5.257 9962513 Minicapacity at Winter Design Temperature (W): 5.355 9962521 Op at Winter Design Temperature (W): 5.355 9962523 Min Capacity Hinter Design Tempe	Dehumidification Performance	Safety Margin			
Violate Heat Pumps Specified Design Loads and Temperatures: Writer Design Temperature (%): -1.9 Once you've narrowed the systems down, and find the system details by looking up Summer Design Temperature (%): -3.9 663412 Summer Design Temperature (%): -3.9 Summer Design Temperature (%): -3.9 663475 Summer Design Temperature (%): -3.9 Summer Design Temperature (%): -3.7 6633478 HSPF (Region IV): HSPF (Region					Ruand Nama
Ank Current and Reference Number Winter Design Temperature (°C): 19 Other System Is addwin, with the System Is addwin, withe System Is addwin, with the System Is addwin, with	Viable Heat Pumps				Brand Name
8654212 Winter Design Heaptrature (°Q): 30 893473 Summer Design Heaptrature (°Q): 30 893475 Summer Design Heaptrature (°Q): 30 8693476 Attributes (general): 8693479 HSFF (Region IV): 8693479 HSFF (Region IV): 8693479 HSFF (Region IV): 8693479 HSFF (Region IV): 8693481 SEER2: 8796414 SEER2: 8908615 Minimum Duct Capacity (EM to 0.5 in WC)*: 2.000 8908616 Winder Design Heat Loss (WM): 8912454 Attributes (function of design loads and temperature (W): 9962519 Max Capacity at Winter Design Temperature (W): 9962520 Max Capacity at Summer Design Temperature (W): 9962521 Debundification perature (W): 9962522 Poet Winter Design Temperature (W): 9962523 Poet Winter Design Temperature (W): 9962524 COP at Winter Design Temperature (where heat pump will still operate) 10070561 Safety Margin 2 (°C)**: 1.00 **(Degrees below design temperature where heat pump will still operate) 9962524 Oxide of F280 or Minimum Temperature (constraints: OK 10047097 Hagr 1047097 Hagr 1047097 Hagr 10445376 Oxide of F280 or	AHRI Certified Reference Number	Info Box		Once you've narr	owed the systems down,
6093475 Summer Design Temperature (20: 30 893475 Attributes (ganeral): 8693476 Attributes (ganeral): 8693477 HSPF (Region IV): 8693478 HSPF (Region IV): 8693479 HSPF (Region IV): 8693479 SER: 8693479 SER: 8693479 SER: 8693481 SER: 8796414 SER: 9308616 "(System Size Multiplied by 400 CFM/ton) 8912450 Attributes (function of design loads and temperature (WV): 8912450 Attributes (function of design loads and temperature (WV): 9962521 Copact yat Summer Design Temperature (WV): 9962521 Dehumidification Performance Factor (Summer): 9962522 CoP at Winter Design Temperature (WV): 9962523 Safet Margin (°C)* 9962524 CoP at Winter Design Temperature (WV): 12.274 9962523 Safet Margin (°C)* 9962524 CoP at Winter Design Temperature (WV): 1.00 9962525 Peak Heating Electrical Load at Winter Design Temperature (WV): 1.02 10070561 Safet Margin (°C)* 1.00 <th>8654212</th> <th></th> <th></th> <th></th> <th> International states of the state of the sta</th>	8654212				 International states of the state of the sta
8693475 Summer Design Heat Gain (KW): 4.77 AHRI Certified Reference Number in the NEEP database 8693476 Attributes (general): NEEP database 8693479 HSFF (Region IV): 11.000 8693479 HSFF (Region IV): III.000 8693470 HSFF (Region IV): III.000 8693471 HSFF (Region IV): III.000 8693480 HSFF2 (Region IV): III.000 8693481 SEFR2: 16.50 8908615 Minimum Duct Capacity (CM at 0.6 in WC)*: 2.000 IIII.000 8908616 "Yestem size (nos): 4.999 8912450 Attributes (function of design loads and temperature): IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	8693473			· · · · · · · · · · · · · · · · · · ·	
8693478 Attributes (general): INELL Uditabase 8693479 HSPF2 (Region IV): 1.000 8693480 HSPF2 (Region IV): ✓ ADP 869341 SER2: 16.50 8906615 Minimum Dut Capacity (CFM at 0.8 in NC)*: 2.000 ✓ AIRCBAR 8906616 "System size (tons): 4.999 8906616 "System size (tons): 4.999 8912450 Attributes (general): ✓ AIRCBAR 8912450 Max Capacity at Winter Design Temperature (kW): 12.274 9962520 Max Capacity at Summer Design Temperature (kW): 17.53 9962521 Dehumidification Performance Factor (summer): 0.863 9962522 CP at Winter Design Temperature (kW): 17.58 9962523 Dehumidification Performance Factor (summer): 0.863 9962524 CP at Winter Design Temperature (kW): 13.325 9962523 Sefety Margin 2 (<c)**:< td=""> 1.00 9962524 CP at Winter Were supplemental heat Loss (kW): 1.332 9962525 Sefety Margin 2 (<c)**:< td=""> 1.00 10070561 Sefety Margin 2 (<c)**:< td=""> 1.00 1047097 Flags:<th>8693475</th><th></th><th></th><th>AHRI Certified Re</th><th>eference Number in the</th></c)**:<></c)**:<></c)**:<>	8693475			AHRI Certified Re	eference Number in the
ABSP3478 HAFF (Region IV): 11.000 8693479 HSPE2 (Region IV): 8693480 HSPE2 (Region IV): 8693481 SER2: 8096615 System Size (tons): 4.999 8006615 Minimum Dut Capacity (CFM at 0.8 in WC)*: 2.000 ✓ AIRCREAN 8006616 "(System size nutribuides y 400 CFM/ton) ✓ AIRCREAN 812454 Max Capacity at Winter Design Temperature (WV): 12.274 9962519 Max Capacity at Summer Design Temperature (WV): 17.58 9962520 Max Capacity at Summer Design Temperature (WV): 17.58 9962521 Dehumidlication Performance Factor (Summer): 0.663 9962522 CP at Winter Design Temperature (WV): 1.758 9962523 Dehumidlication Performance Factor (Summer): 0.863 9962524 "Or at Winter Design Temperature (WV): 1.922 9962524 "Opacity At Summer Design Temperature (W): 1.00 9962523 Sefet Margin (CP)************************************	8693476			NEEP database	
8693479 HSPF2 (Region IV): Image: App and the set of the se	8693478				
8693480 HSPF2 (Region V): SEER: 16.50 8796414 SEER2: AIRDACH 8908615 Minimum Duct Capacity (CFM at 0.8 in WC): 2.000 8908616 Minimum Duct Capacity (CFM at 0.8 in WC): 2.274 8912450 Attributes (function of design loads and temperatures): AIREASE 9962521 Max Capacity at Winter Design Temperature (kW): 12.274 9962521 Dahumidiffication Parformance Factor (Summer): 0.863 9962522 COP at Winter Design Temperature (kW): 17.58 9962523 Dehumidiffication Parformance Factor (Summer): 0.863 9962524 COP at Winter Design Temperature (kW): 17.58 9962523 Peak Heating Electrical Load at Winter Design Temperature (kW): 17.58 9962524 COP at Winter Design Temperature (kW): 17.58 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss: 3.535 9962524 COP at Winter Design Temperature where supplemental heating is not needed) 3.955 A MARA DISTINCTIONS 1047096 **(Degrees below design temperature Constraints: OK ARCOA RE 5.500 A ARSTRONG AIR 10271657 Outside of	8693479				
8693481 SEER: 16.50 8796414 SEER2: 4.999 8006615 System Size (tons): 4.999 8006616 "(System size multiplied by 40 CFM/ton) AIREASE 8012450 Attributes (function of design loads and temperatures): AIREQUEST 9962520 Max Capacity at Winter Design Temperature (kW): 12.274 ✓ AIRQUEST 9962521 Dehumidification Performance Factor (Summer): 0.863 3.555 9962522 COP at Winter Design Temperature (kW): 15.542 ✓ AMANA DISTINCTIONS 9962524 Pack Heating Electrical Load at Winter Design Temperature and Design Heat Loss: 3.535 9962524 Safety Margin 2(°C)**: 1.00 10070561 Safety Margin 2(°C)**: 1.00 **(Degrees below design temperature where supplemental heating is not needed) 3.955 ✓ AMERICAN STANDARD /MITS 396257 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOARE ✓ ARCOARE 10271657 Outside of F280 or Minimum Temperature OK ØK ✓ ARM STRONG AIR 10447097 Flags: OK ✓ ARMSTRONG AIR 10445376 Cooling Min Capacity Flag: OK	8693480				
8796414 SEER2: ARUDACH 8908615 Minimum Dut Capacity (CFM at 0.8 in WC)*: 2,000 ✓ ARREASE 8912450 *(System size multiplied by 400 CFM/ton) ✓ AIRGREASE 9962519 Max Capacity at Summer Design Temperature (WV): 12.274 9962520 Max Capacity at Summer Design Temperature (WV): 5.525 9962521 Dehumidification Performance Factor (Summer): 0.863 9962522 COP at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (KW): 1.932 ✓ AMERICAN STANDARD 9962524 **(Degrees below design temperature where heat pump will still operate) ✓ AMERICAN STANDARD 10047096 **(Cegrees below design temperature Constraints: OK ✓ ARCOARE 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOARE 10445376 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 10445376 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 10445376 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 10445376 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 1	8693481				
8908615 System Size (tons): 4.999 Minimum Duct Capacity (CFM at 0.8 in WC)*2,000 ✓ AIRGREAN 9808616 *(System size multiplied by 400 CFM/ton) ✓ AIRGREAN 9912454 Attributes (function of design loads and temperatures): ✓ AIRGREAN 9962520 Max Capacity at Winter Design Temperature (kW): 5.525 9962521 Dehumidification Performance Factor (Summer): 0.663 9962522 CO at Winter Design Temperature (kW): 1.7.58 9962523 Dehumidification Performance Factor (Summer): 0.663 9962524 CO at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss: 3.535 9962524 Safety Margin 2(°C)*: 1.00 *(Degrees below design temperature where heat pump will still operate) ✓ AMANA DISTINCTIONS 9962524 Safety Margin 2(°C)*: 1.00 *(Degrees below design temperature where heat pump will still operate) ✓ AMERICAN STANDARD / MITS 10147096 *(Degrees below design temperature Constraints: OK ✓ ARCOIRE 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOIRE 104			SEER2:		
8908616 Minimum Duct Capacity (CM) at 0.8 in WC/*: 2,000 ✓ AlkOREANU 8912450 AlkTobleANU ////////////////////////////////////					
8912450 Attributes (function of design loads and temperatures): ✓ AIRCUA 9962519 Max Capacity at Summer Design Temperature (KW): 12.274 9962520 Max Capacity at Summer Design Temperature (KW): 17.58 9962521 Dehumidification Performance Factor (Summer): 0.863 9962522 COP at Winter Design Temperature and Design Heat Loss: 3.555 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): 1.932 ✓ AMANA DISTINCTIONS 9962524 *(Degrees below design temperature where supplemental heating is not needed) ✓ AMERICAN STANDARD 9962524 *(Degrees below design temperature where heat pump will still operate) ✓ AREDICAN STANDARD 1047096 **(Degrees below design temperature Constraints: OK Heating Capacity Flag: OK 10271657 Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: OK 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10445377 Minimum Temp					
8912454 Attributes (function of design loads and temperatures): Image: Comparison of the sign temperature (kW): 12.274 9962519 Max Capacity at Winter Design Temperature (kW): 5.525 9962520 Max Capacity at Summer Design Temperature (kW): 5.525 9962521 Dehumidification Performance Factor (Summer): 0.863 9962522 COP at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): 1.00 9962524 COP at Winter Design Temperature where supplemental heating is not needed) 3.955 9962524 Safety Margin (°C)*: 1.00 10070561 Safety Margin 2 (°C)*: 1.00 10147096 **(Degrees below design temperature where heat pump will still operate) 3.955 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOAIRE 10445374 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 10445376 Cooling Max Capacity Flag: OK ✓ ARM STRONG AIR 10445377 Minimum Temperature Flag: OK ✓ ARM STRONG AIR 10445377 Minimum Temperature Flag: OK ✓ ARCOAIRE			(System size multiplied by 400 CFM/ton)		/.153
Max Capacity at Winter Design Temperature (kW): 12.274 9962520 Min Capacity at Summer Design Temperature (kW): 5.525 9962521 Dehumidfication Performance Factor (Summer): 0.863 9962522 COP at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Safety Margin (°C)*: 1.00 *(Degrees below design temperature where supplemental heating is not needed) 3.555 ✓ AMERICAN STANDARD 9962524 *(Degrees below design temperature where heat pump will still operate) ✓ AMERICAN STANDARD 10047096 **(Degrees below design temperature Constraints: OK ✓ ARCOAIRE 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOIRE 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10445377 Minimum Temperature Flag: OK 10514710 ✓ Keep Only Ø Exclude Q Keep Only Ø Exclude Q AJUR			Attributes (function of design loads and temperatures):		
9962520 Min Capacity at Summer Design Temperature (kW): 5.525 ✓ ✓ ALLED 9962521 Dehumidification Performance Factor (Summer): 0.683 2.642 ✓ AMANA 9962523 Dekumidification Performance Factor (Summer): 0.863 2.642 ✓ AMANA 9962524 COP at Winter Design Temperature and Design Heat Loss: 3.555 ✓ AMANA DISTINCTIONS 9962524 Safety Margin (°C)*: 1.00 ✓ AMERICAN STANDARD 10070561 Safety Margin 2 (°C)**: 1.00 ✓ AMERICAN STANDARD 10147096 **(Degrees below design temperature where heat pump will still operate) ✓ AMERICAN STANDARD 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCTIC KING 10445374 Cooling Min Capacity Flag: OK ✓ ARM STRONG AIR 10445377 Minimum Temperature Flag: OK ✓ AILEED ✓ 10445371 Minimum Temperature Flag: OK ✓ AILEED ✓ AULED 10445374 Cooling Min Capacity Flag: OK ✓ ✓ AULED ✓ ✓ </th <th></th> <th></th> <th>Max Capacity at Winter Design Temperature (kW):</th> <th></th> <th></th>			Max Capacity at Winter Design Temperature (kW):		
9962521 Dehumidification Performance Factor (Summer): 0.683 9962522 COP at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): 1.932 3.642 9962524 Safety Margin (2(°C)*: 1.00 *(Degrees below design temperature where supplemental heating is not needed) 3.955 AMANA DISTINCTIONS 010147096 **(Degrees below design temperature where heat pump will still operate) AMERISTAR 10147097 Flags: ARCOAIRE 10271657 Outside of F280 or Minimum Temperature Constraints: OK ARCOAIRE 10445376 Cooling Min Capacity Flag: OK 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10514710 ✓ Keep Only Ø Exclude ŷ Exclude ŷ				5.525	
9962522 COP at Winter Design Temperature and Design Heat Loss: 3.535 9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): 1.932 Safety Margin (Q)*: 9962524 *(Degrees below design temperature where supplemental heating is not needed) Safety Margin (Q)*: 1.00 10070561 Safety Margin (Q)*: 1.00 AMERICAN STANDARD / MITS 10147096 **(Degrees below design temperature where heat pump will still operate) APOODR 10147097 Flags: ✓ ARCOAIRE 10271657 Outside of F280 or Minimum Temperature Constraints: OK ✓ ARCOAIRE 10445374 Cooling Min Capacity Flag: OK 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10514710 ✓ Keep Only Ø Exclude ŷ OK 10514710 ✓ Keep Only Ø Exclude ŷ Is.44 AZUR					
9962523 Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): 1.932 AMARA DISTINCTIONS 9962524 1.00 AMERICAN STANDARD 10070561 Safety Margin (°C)*: 1.00 · (Degrees below design temperature where supplemental heating is not needed) 3.955 · AMERICAN STANDARD / MITS 10147096 **(Degrees below design temperature where heat pump will still operate) · AMERICAN STANDARD / MITS 10147097 **(Degrees below design temperature constraints: OK · ARCOAIRE 10271657 Outside of F280 or Minimum Temperature Constraints: OK · ARCOAIRE 10445374 Cooling Min Capacity Flag: OK · ARMSTRONG AIR 10445377 Cooling Max Capacity Flag: OK · Atk 10514710 ✓ Keep Only Ø Exclude Ø V AJURORA					
Safety Margin (°C)*: 1.00 9962524 *(Degrees below design temperature where supplemental heating is not needed) 10070561 Safety Margin 2 (°C)*: 10147096 **(Degrees below design temperature where heat pump will still operate) 10147097 **(Degrees below design temperature constraints: OK 10271657 Outside of F280 or Minimum Temperature Constraints: OK 10445374 Cooling Min Capacity Flag: 10445377 OK 10445377 Minimum Temperature Flag: 10514710 ✓ Keep Only Ø Exclude Q					
10070561 Safety Margin 2 (°C)**: 1.00 10147096 **(Degrees below design temperature where heat pump will still operate) 10147097 **(Degrees below design temperature where heat pump will still operate) 10147097 Flags: 10271657 Outside of F280 or Minimum Temperature Constraints: OK 10445374 Outside of F280 or Minimum Temperature Constraints: OK 10445376 Cooling Min Capacity Flag: OK 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10514710 ✓ Keep Only Ø Exclude Ŷ Y					
10147096 **(Degrees below design temperature where heat pump will still operate) 3.955 ✓ AMERISTAR 10147097 **(Degrees below design temperature where heat pump will still operate) ✓ APOODR 10271657 Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: ✓ ARCTIC KING 10445374 Cooling Min Capacity Flag: OK 10445376 Cooling Max Capacity Flag: OK 10445377 Minimum Temperature Flag: OK 10514710 ✓ Keep Only Ø Exclude Q 15.44 ✓ AZUR				ating is not needed)	
10147097Image: Control of F280 or Minimum Temperature Constraints: OK Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: OKImage: Control of F280 or Minimum Temperature Constraints: OK Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: OKImage: Control of F280 or Minimum Temperature Constraints: OK OK Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: OKImage: Control of F280 or Minimum Temperature Constraints: OK OK OUtside of F280 or Minimum Temperature Constraints: OK OK Cooling Min Capacity Flag: OKImage: Control of F280 or Minimum Temperature Constraints: OK OK OUtside of F280 or Minimum Temperature Constraints: OK OKImage: Control of F280 or Minimum Temperature Flag: OKImage: Control of F280 or Minimum Temperature Flag					
10271657Flags: Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag: Cooling Min Capacity Flag: OK✓ ARCOAIRE ✓ ARCTIC KING10445376OK Cooling Max Capacity Flag: Minimum Temperature Flag:OK OK✓ ARM STRONG AIR ✓ ARMSTRONG AIR10445377Minimum Temperature Flag: VARCAIREOK VARMSTRONG AIR✓ ARMSTRONG AIR ✓ ARMSTRONG AIR10514710✓ Keep Only Ø Exclude Q15.44✓ AZUR			Control con	tili operate)	APOODR
102/1657Outside of F280 or Minimum Temperature Constraints: OK Heating Capacity Flag:OKImage: Cooling Min Capacity Flag:OK10445376Cooling Min Capacity Flag:OKImage: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OK10445377Minimum Temperature Flag:OKImage: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OK10514710Image: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OK10514710Image: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OK10514710Image: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:OKImage: Cooling Max Capacity Flag:Image: Cooling Max Capacity Flag:Image: Cooling Max Capacity Flag:OK10514710Image: Cooling Max Capacity Flag:Image: Cooling Max Capacity Flag: <t< th=""><th></th><th></th><th>Flags:</th><th></th><th>ARCOAIRE</th></t<>			Flags:		ARCOAIRE
10445374OK10445376Cooling Min Capacity Flag:OK10445377Cooling Max Capacity Flag:OK10514710✓ Keep Only ⊘ Exclude ♀IS.44			<u> </u>		ARCTIC KING
10445376OK10445377Cooling Max Capacity Flag: Minimum Temperature Flag:OK10514710✓ Keep Only Ø Exclude Q15.4410514711✓ Keep Only Ø Exclude Q15.44			Heating Capacity Flag: OK		ARM STRONG AIR
10445377 Minimum Temperature Flag: OK ✓ ATK 10514710 ✓ Keep Only ⊘ Exclude ♀ 15.44 ✓ AZUR					ARMSTRONG AIR
10514710 √ Keep Only ⊘ Exclude ♀ 15.44 ✓ AZUR					
√ Keep Only Ø Exclude 9		-	winimum remperature Fiag: OK		✓ AURORA
			✓ Keep Only Ø Exclude Ø		15.44 🗸 AZUR
	1051/1711	-		U	BLADEX


Case 1: Code home


- Heating Loads: 12.27 kW (41,900 BTU/h, 3.49 Tons)
- Cooling Loads: 8.53 kW (29,100 BTU/h, 2.42 Tons)







Min Capacity at Summer Design Temperature (kW)

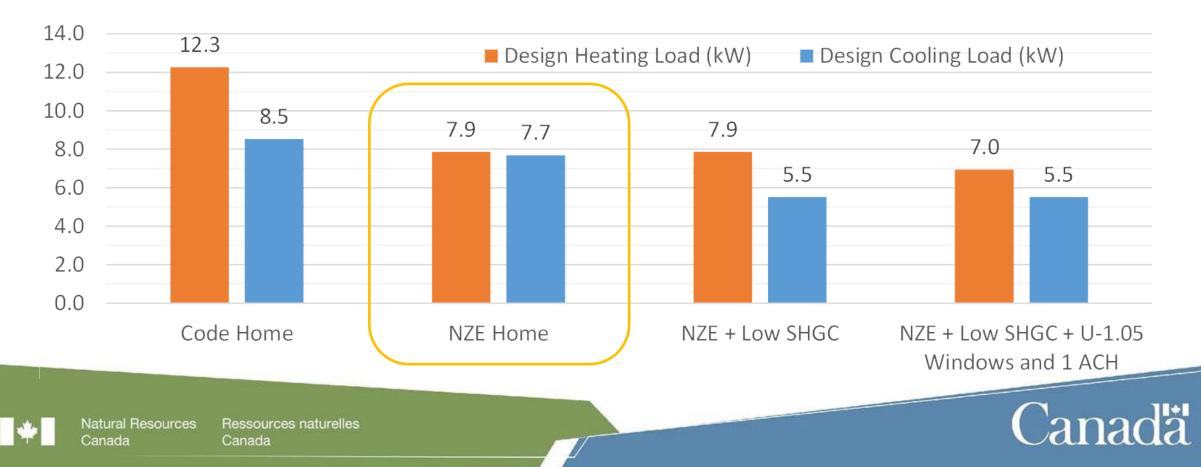
BLADEX

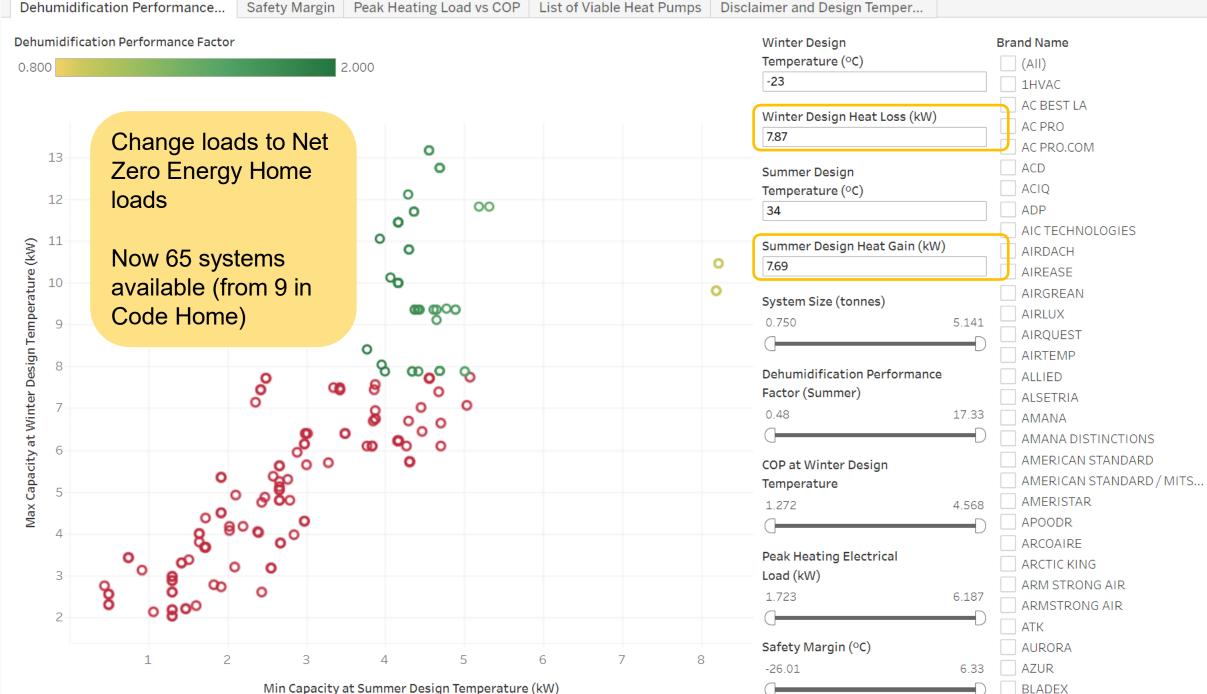
Winter Design	Brand Name
Temperature (°C)	(AII)
-23	1HVAC
	AC BEST LA
Winter Design Heat Loss (kW)	ACPRO
12.27	AC PRO.COM
Summer Design	ACD
Temperature (°C)	ACIQ
34	ADP
	AIC TECHNOLOGIES
Summer Design Heat Gain (kW)	AIRDACH
8.53	AIREASE
System Size (tonnes)	AIRGREAN
- 0.750 5.141	AIRLUX
	AIRQUEST
	AIRTEMP
Dehumidification Performance	ALLIED
Factor (Summer)	ALSETRIA
0.53 19.23	AMANA
()	AMANA DISTINCTIONS
COP at Winter Design	AMERICAN STANDARD
Temperature	AMERICAN STANDARD/MITS
1.272 4.568	AMERISTAR
CC	APOODR
Deale Heating Flactures	ARCOAIRE
Peak Heating Electrical Load (kW)	ARCTIC KING
2.686 9.646	ARM STRONG AIR
2.000 5.040	ARMSTRONG AIR
	ATK
Safety Margin (°C)	AURORA
-31.03 1.41	AZUR
) BLADEX

Dehumidification Performance	Safety Margin	Peak Heating Load vs COP	List of Viable Heat Pumps	Disclaimer and Design Temper
------------------------------	---------------	--------------------------	---------------------------	------------------------------

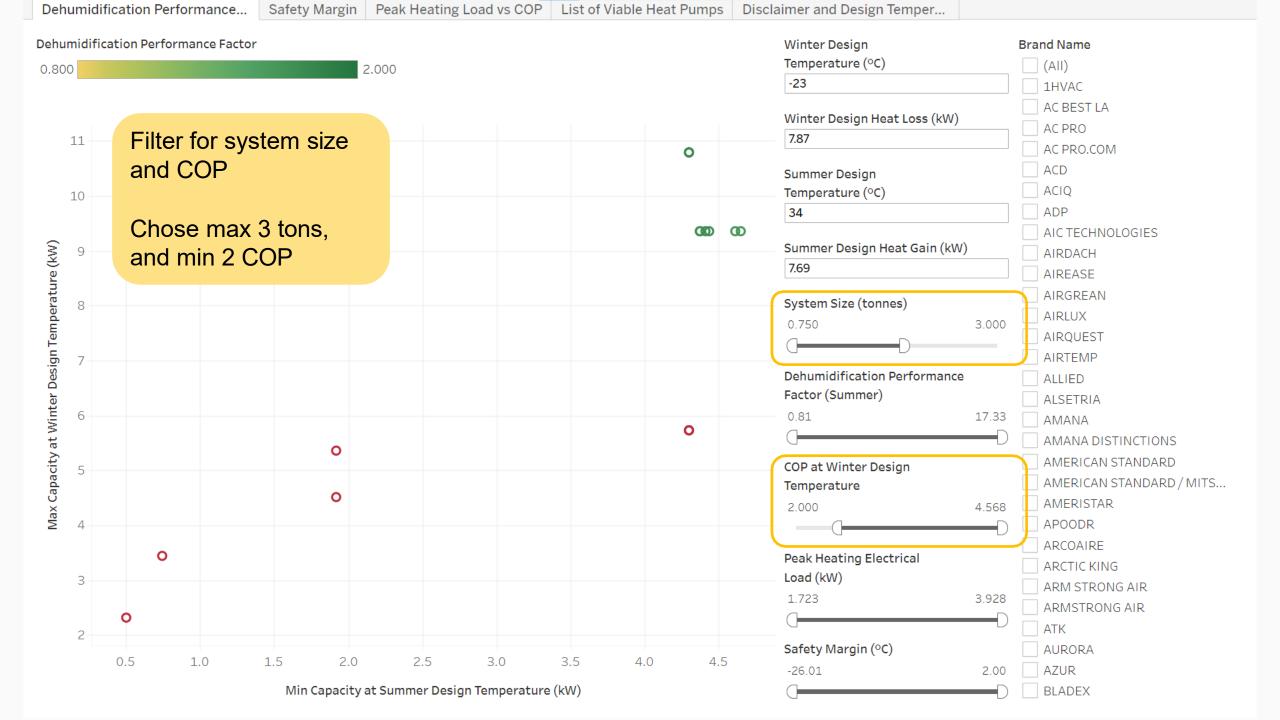
Viable Heat Pumps

AHRI Certified Reference Number	Info Box
207517158	
207517159	
207525858	
211016458	
211016459	
211016460	
211016654	
211016655	
211016662	


- From the 9 similar systems available
 - No difference on system size
 - Minimal difference on dehumidification performance
 - Only significant difference is on COP
- Let's maximize the COP

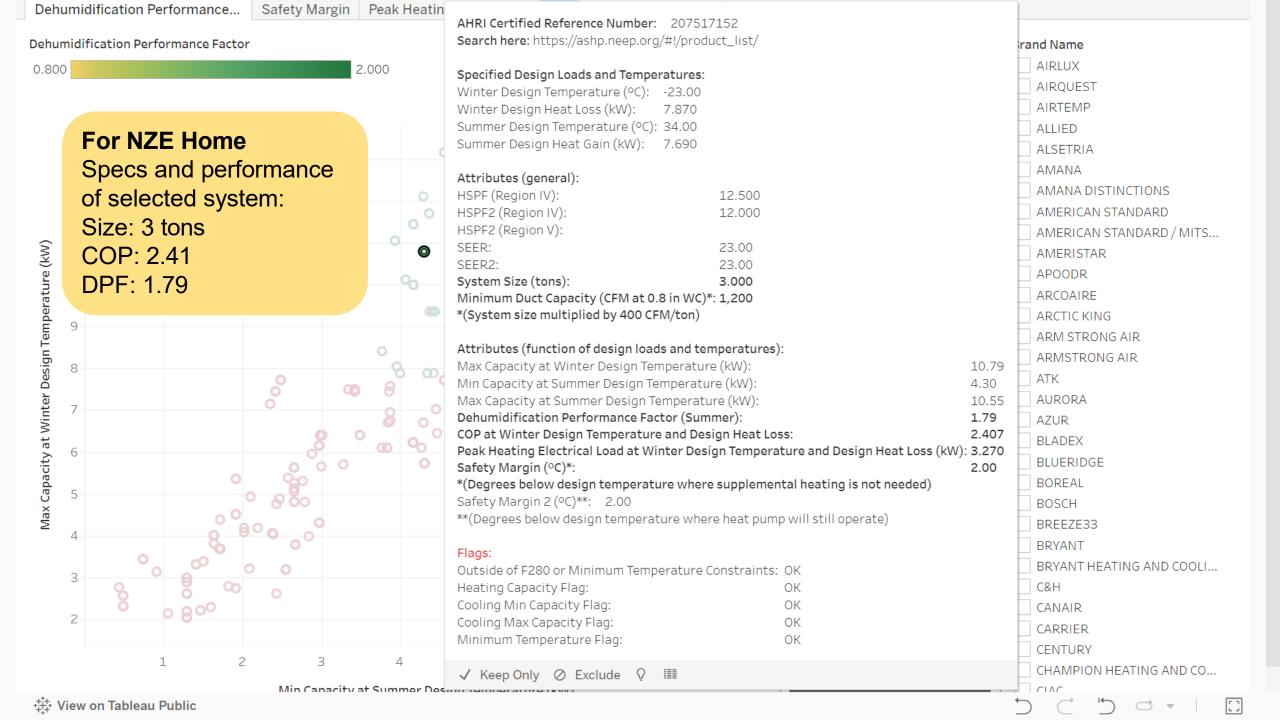

Winter Design	Brand Name
Temperature (°C)	(AII)
-23	1HVAC
Winter Design Heat Loss (kW)	AC BEST LA
12.27	AC PRO
12.27	AC PRO.COM
Summer Design	ACD
Temperature (°C)	ACIQ
34	ADP
	AICTECHNOLOGIES
Summer Design Heat Gain (kW)	AIRDACH
8.53	AIREASE
Sustan Size (tennes)	AIRGREAN
System Size (tonnes)	AIRLUX
4.000 4.000	AIRQUEST
	AIRTEMP
Dehumidification Performance	ALLIED
Factor (Summer)	ALSETRIA
1.81902 1.87286	AMANA
QD	AMANA DISTINCTIONS
COP at Winter Design	AMERICAN STANDARD
Temperature	AMERICAN STANDARD / MITS
1.4995 2.1433	AMERISTAR
	APOODR
G D	
Peak Heating Electrical	ARCTIC KING
Load (kW)	ARM STRONG AIR
5.725 8.183	ARMSTRONG AIR
()	
Safety Margin (°C)	AURORA
1.1052 1.4089	AZUR
QD	BLADEX

Dehumidif	ication Performance	Safety Margin	Peak Heating I			
				AHRI Certified Reference Number: 207517158		
Dehumidific	ation Performance Factor	r		Search here: https://ashp.neep.org/#!/product_list/		nd Name
0.800			2.000	Specified Design Loads and Temperatures:		(AII)
				Winter Design Temperature (°C): -23.00		1HVAC
				Winter Design Heat Loss (kW): 12.27		AC BEST LA
				Summer Design Temperature (°C): 34.00		AC PRO
	For Code Ho	- mo		Summer Design Heat Gain (kW): 8.530		
13	гог соце по	Jille	O			AC PRO.COM
	Selected sys	tem specs	C	Attributes (general):		ACD
12	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0	HSPF (Region IV): 12.000		ACIQ
	and performa	ance:	0	HSPF2 (Region IV): 11.500		ADP
- 11	Size: 4 tons		0	HSPF2 (Region V):		AICTECHNOLOGIES
Ş ¹¹			0	SEER: 23.00		AIRDACH
e ()	COP: 2.14			SEER2: 23.00		AIREASE
10	DPF: 1.87		0	System Size (tons): 4.000 Minimum Duct Capacity (CFM at 0.8 in WC)*: 1,600		AIRGREAN
era			00	*(System size multiplied by 400 CFM/ton)		AIRLUX
u 9			0			
цт			0	Attributes (function of design loads and temperatures):		AIRQUEST
sign			0		13.16	AIRTEMP
De		° °		Min Capacity at Summer Design Temperature (kW):	4.55	ALLIED
		° °			14.07	ALSETRIA
Vin			8 0 0 0		1.87	AMANA
at		8 9	രം		2.143	AMANA DISTINCTIONS
⁻⁰ it		000	0	Peak Heating Electrical Load at Winter Design Temperature and Design Heat Loss (kW): Safety Margin (°C)*:	5.725 1.41	AMERICAN STANDARD
pac	0	90		*(Degrees below design temperature where supplemental heating is not needed)		AMERICAN STANDARD / MITS
Max Capacity at Winter Design Temperature (kW)		0 8 00		Safety Margin 2 (°C)**: 2.00		AMERISTAR
Ma	00	0000		**(Degrees below design temperature where heat pump will still operate)		APOODR
4	e de la companya de	00		Flags:		ARCOAIRE
	000	0 0		Outside of F280 or Minimum Temperature Constraints: OK		ARCTIC KING
3	0 0	0		Heating Capacity Flag: OK		ARM STRONG AIR
	° 800	0		Cooling Min Capacity Flag: OK		ARMSTRONG AIR
2	0 80			Cooling Max Capacity Flag: OK		АТК
				Minimum Temperature Flag: OK		AURORA
	1 2	3	4			AZUR
		Min Conseiture		✓ Keep Only ⊘ Exclude ♀		
		with Capacity a	at Summer Design			BLADEX


Case 2: Net Zero Energy Home

- Heating Loads: 7.87 kW (26,900 BTU/h, 2.24 Tons)
- Cooling Loads: 7.69 kW (26,200 BTU/h, 2.19 Tons)

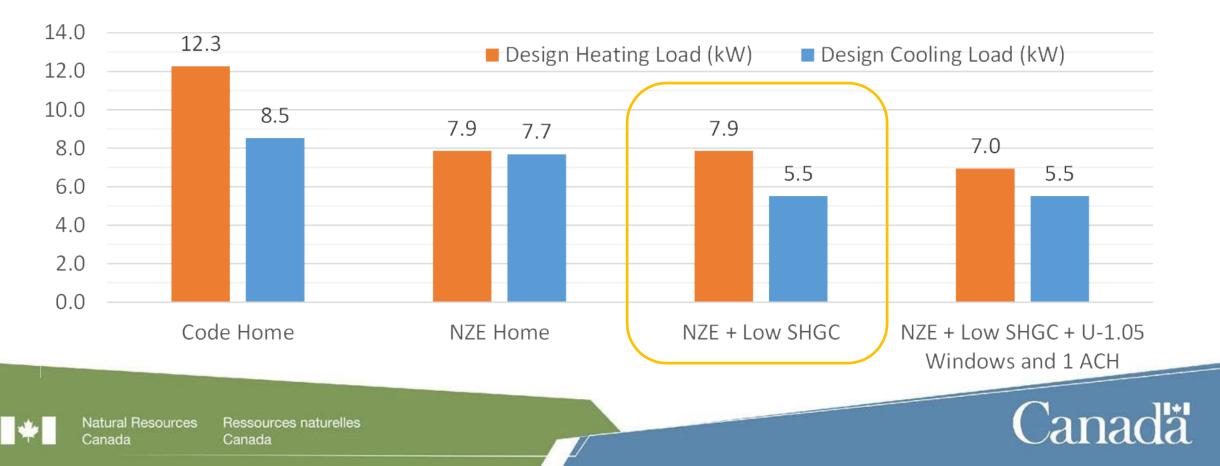
Min Capacity at Summer Design Temperature (kW)



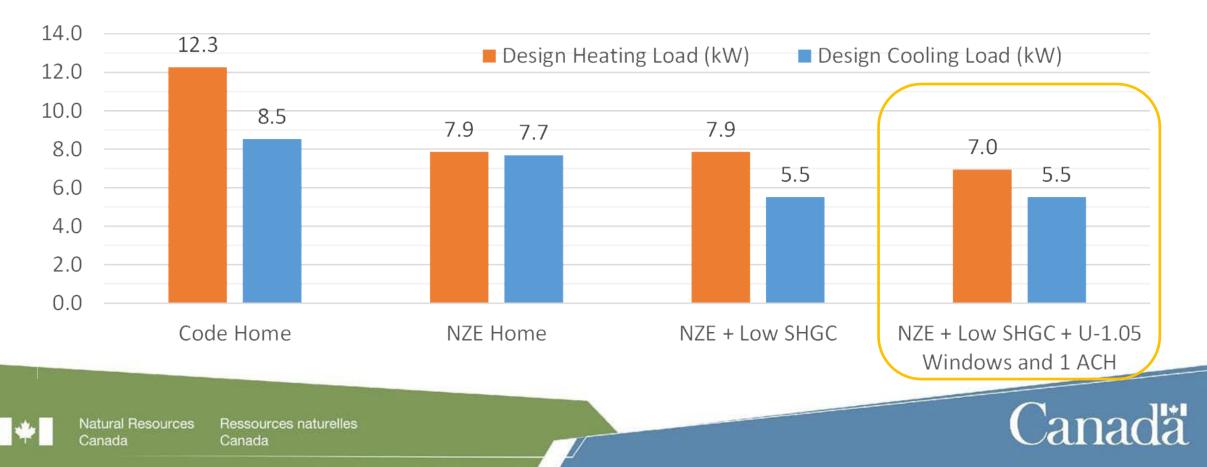
Viable Heat Pumps

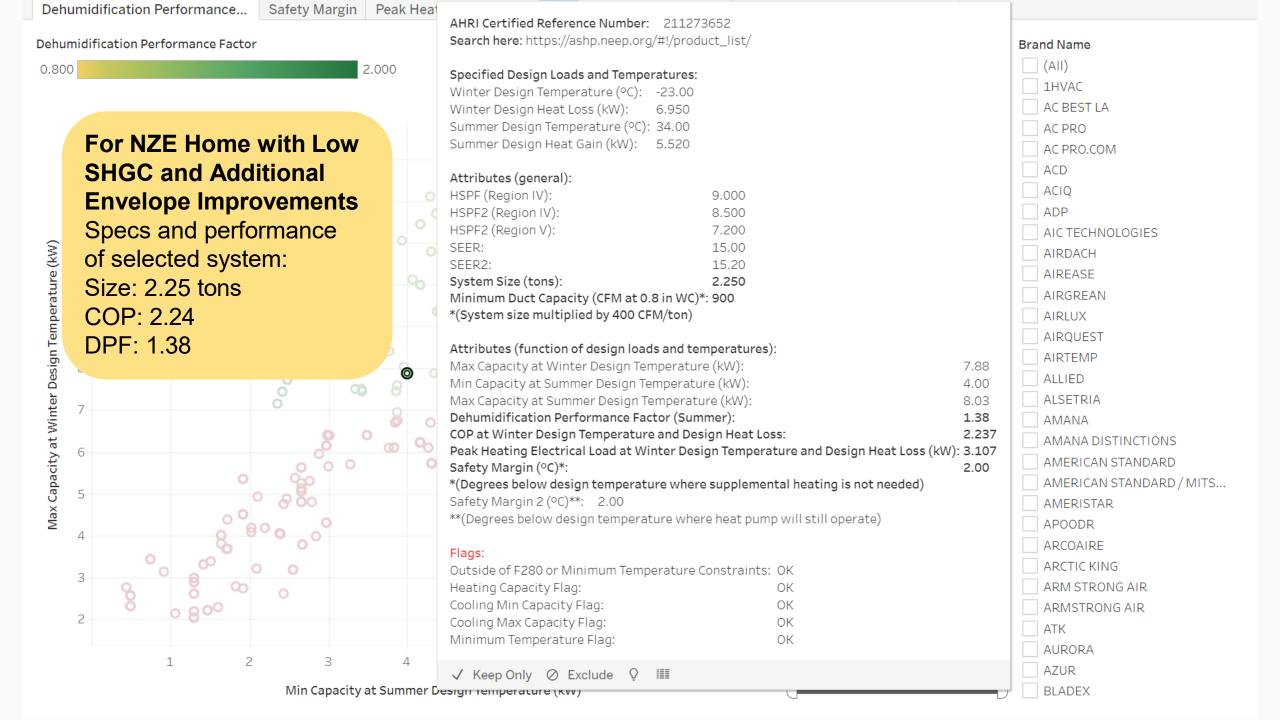
AHRI Certified Reference Number	Info Box
207517152	
207517153	
207525855	
207702691	
211259275	
211259276	
211259278	
211259279	
211497055	

- Now we can further:
 - Reduce system size
 - Improve dehumidification performance factor
 - Or Improve COP
- Since the COP modifications have a larger impact, chose to improve COP


Winter Design	Brand Name
Temperature (°C)	(AII)
-23	1HVAC
	AC BEST LA
Winter Design Heat Loss (kW)	AC PRO
7.87	AC PRO.COM
Summer Design	ACD
Temperature (°C)	ACIQ
34	ADP
	AICTECHNOLOGIES
Summer Design Heat Gain (kW)	AIRDACH
7.69	AIREASE
System Size (tonnes)	AIRGREAN
2.8330 3.0000	AIRLUX
	AIRQUEST
	AIRTEMP
Dehumidification Performance	ALLIED
Factor (Summer)	ALSETRIA
1.6540 1.7885	AMANA
DD) 🔲 AMANA DISTINCTIONS
COP at Winter Design	AMERICAN STANDARD
Temperature	AMERICAN STANDARD / MITS
2.0000 2.4070	AMERISTAR
	APOODR
Deale Heating Floatwice	ARCOAIRE
Peak Heating Electrical Load (kW)	ARCTIC KING
3.2696 3.9283	ARM STRONG AIR
3.2050 3.5205	
JD	ATK
Safety Margin (°C)	AURORA
2.000 2.000	AZUR
0D) BLADEX

Case 3: NZE Home + Low SHGC


- Reducing SHGC from 0.6 to 0.3 for resilience and comfort purposes
- Cooling Loads reduced to: 5.52 kW (18,800 BTU/h, 1.57 Tons)



Deh	numidification Performance Safety Margin Peak H	leating				
			AHRI Certified Reference Number: 207517152			
Dehu	imidification Performance Factor		Search here: https://ashp.neep.org/#!/product_list/	Somo ovotom og	e a	and Name
0.80	2.000			Same system as		(AII)
			Specified Design Loads and Temperatures:	previous!		1HVAC
			Winter Design Temperature (°C): -23.00 Winter Design Heat Loss (kW): 7.870		E F	AC BEST LA
			Summer Design Temperature (°C): 34.00		i i	AC PRO
	For NZE Home with		Summer Design Heat Gain (kW): 5.520		-	
					-	AC PRO.COM
	Low SHGC		Attributes (general):		-	ACD
	Specs and performance		HSPF (Region IV): 12.500		-	ACIQ
		0	HSPF2 (Region IV): 12.000			ADP
_	of selected system:	°	HSPF2 (Region V):			AICTECHNOLOGIES
(W)	Size: 3 tons	O	SEER: 23.00			AIRDACH
e (l		、	SEER2: 23.00			AIREASE
atur	COP: 2.41	6	System Size (tons): 3.000 Minimum Duct Capacity (CFM at 0.8 in WC)*: 1,200		F	AIRGREAN
Jere	DPF: 1.79 1.28	O	*(System size multiplied by 400 CFM/ton)		F	AIRLUX
Design Temperature (kW)			(-,			AIRQUEST
цŢ	0		Attributes (function of design loads and temperatures):		-	AIRTEMP
sig	8	œ	Max Capacity at Winter Design Temperature (kW):	1	.0.79	
Ğ		-0	Min Capacity at Summer Design Temperature (kW):		.30	ALLIED
Itel	7	0	Max Capacity at Summer Design Temperature (kW):		.0.55	ALSETRIA
Wir	ð	0	Dehumidification Performance Factor (Summer):		28 407	AMANA
at	6 0 0	ൟഁ഻	COP at Winter Design Temperature and Design Heat Loss: Peak Heating Electrical Load at Winter Design Temperature			AMANA DISTINCTIONS
city	000	0	Safety Margin (°C)*:		.00	AMERICAN STANDARD
ipa	O 920		*(Degrees below design temperature where supplemental h			AMERICAN STANDARD / MITS
Max Capacity at Winter	5		Safety Margin 2 (°C)**: 2.00			AMERISTAR
Ma			**(Degrees below design temperature where heat pump will	l still operate)		APOODR
	4				F	ARCOAIRE
			Flags: Outside of F280 or Minimum Temperature Constraints: OK			ARCTIC KING
	3 0 0 0		Heating Capacity Flag: OK		F	ARM STRONG AIR
			Cooling Min Capacity Flag: OK			ARMSTRONG AIR
	2 0 8 00		Cooling Max Capacity Flag: OK			
			Minimum Temperature Flag: OK			ATK
	1 2 3 4					AURORA
			🗸 Keep Only 🖉 Exclude 🍳 🏢			AZUR
	Min Capacity at Summ	er Desig				BLADEX

Case 4: NZE + Low SHGC + Improved Envelope

- Upgrading windows (U-1.05 from U-1.4), and airtightness (1 ACH from 1.5 ACH)
- Heating Loads reduced to: 6.95 kW (23700 BTU/h, 1.98 Tons)

How did the envelope selection effect HP selections?

House Envelope Efficiency Level	Number of heat pumps meeting loads (#)	System Size (tons)	Duct Size (CFM)	COP at Winter Design Temperature	Dehumidification Performance Factor
Code	9	4.00	1600	2.14	1.87
NZE	65	3.00	1200	2.41	1.79
NZE + Low SHGC	56	3.00	1200	2.41	1.28
NZE + Low SHGC + U-1.05 Windows and 1 ACH	75	2.25	900	2.24	1.38

Natural Resources Ressources naturelles Canada

How did the envelope selection effect HP selections?

House Envelope Efficiency Level	Number of heat pumps meeting loads (#)	System Size (tons)	Duct Size (CFM)	COP at Winter Design Temperature	Dehumidification Performance Factor
Code	9	4.00	1600	2.14	1.87
NZE	65	3.00	1200	2.41	1.79
NZE + Low SHGC	56	3.00	1200	2.41	1.28
NZE + Low SHGC + U-1.05 Windows and 1 ACH	75	2.25	900	2.24	1.38

Natural Resources Ressources naturelles Canada

How did the envelope selection effect HP selections?

House Envelope Efficiency Level	Number of heat pumps meeting loads (#)	System Size (tons)	Duct Size (CFM)	COP at Winter Design Temperature	Dehumidification Performance Factor
Code	9	4.00	1600	2.14	1.87
NZE	65	3.00	1200	2.41	1.79
NZE + Low SHGC	56	3.00	1200	2.41	1.28
NZE + Low SHGC + U-1.05 Windows and 1 ACH	75	2.25	900	2.24	1.38

Natural Resources Ressources naturelles Canada

UNCLASSIFIED - NON CLASS

Key takeaways

101 Lowering heating loads of the house provides more heat pump options Net zero envelop performance is well position for heat pump use High-capacity heat pump are more expensive and require bigger ductwork

O2 Matching heating and cooling loads helps to get good summer and winter performance for heat pumps

Its easier to design one system for two matching loads rather than two separate loads Keep in mind that high solar heat gain can have negative contribution to comfort

103 Not all systems are equal in dehumidification performance System if good turndown ratio will outperform system with system unable to operate in low-capacity cooling

Let's revisit...

Step	Current	Interested to explore
1	Discovery: barriers, challenges & pain points	
2	Configuration: centrally ducted system, hybrid install	
3	Sizing approach: Emphasis on cooling	
4	Supply outlet approach: perimeter supply	
5	Duct Sizing: low velocity	
6	Choose Zoning: single zone	
7	Return Duct design: traditional return design	
8	Duct Sealing: base level sealing	
9	F280 HL/HG: Work with HVAC contractor to complete F280 calculations	
10	Heat pump selection: HP does not meet full load, furnace backup	
11	Utility rates/controls: Backup only below TBP	
12	Dehumidification controls : not implemented/not designed	
13	GHG, cost, energy outcomes	

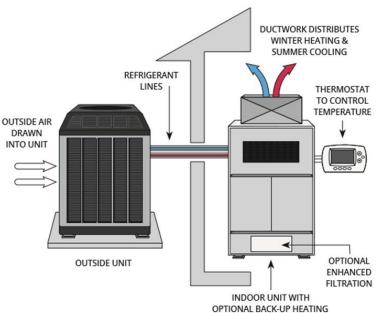
Natural Resources Ressources naturelles Canada Canada

*

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

Control Strategies for Heat Pumps

Strategies for optimising cost, GHG and energy


June 10, 2024 – Vancouver Rob Pope – Ecolighten Energy Solutions

Heat Pump – Auxiliary Heat

ALL ELECTRIC - 2 POSSIBILITIES

- Heat pump is **sized for full load** and has the capacity to run continuously over its full operating range throughout design conditions
- Heat pump is sized to a portion of the load and requires 2. auxiliary electric heat
 - Auxiliary heater added below the thermal balance point as • needed to meet the load
 - Auxiliary heater can operate simultaneously in conjunction with • the heat pump
 - Heat Pump switch-over runs according to one of the control • options to be discussed.

Canada

latural Resources Ressources naturelles Canada

Heat Pump – Auxiliary Heat

NATURAL GAS (Dual Fuel or Hybrid)

- Heat pump is sized to a portion of the load and requires auxiliary natural gas heat
 - The heat pump is turned off when auxiliary gas starts ٠
 - Heat pump and auxiliary do not run simultaneously, only one or ٠ the other at any given time
 - Heat Pump switch-over runs according to one of the control • options to be discussed

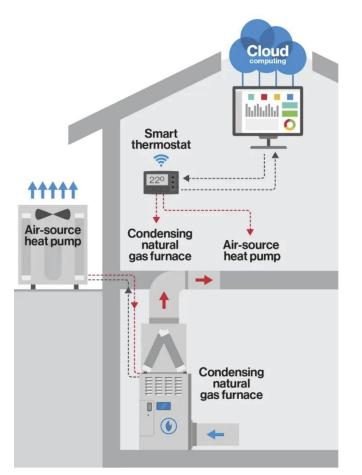
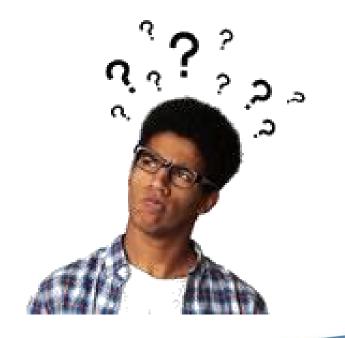


Figure: Hybrid Heating. Used with permission from Enbridge Gas Inc. All rights reserved. 2022.

Ressources naturelles Natural Resources Canada

Control Approaches – What is out there?

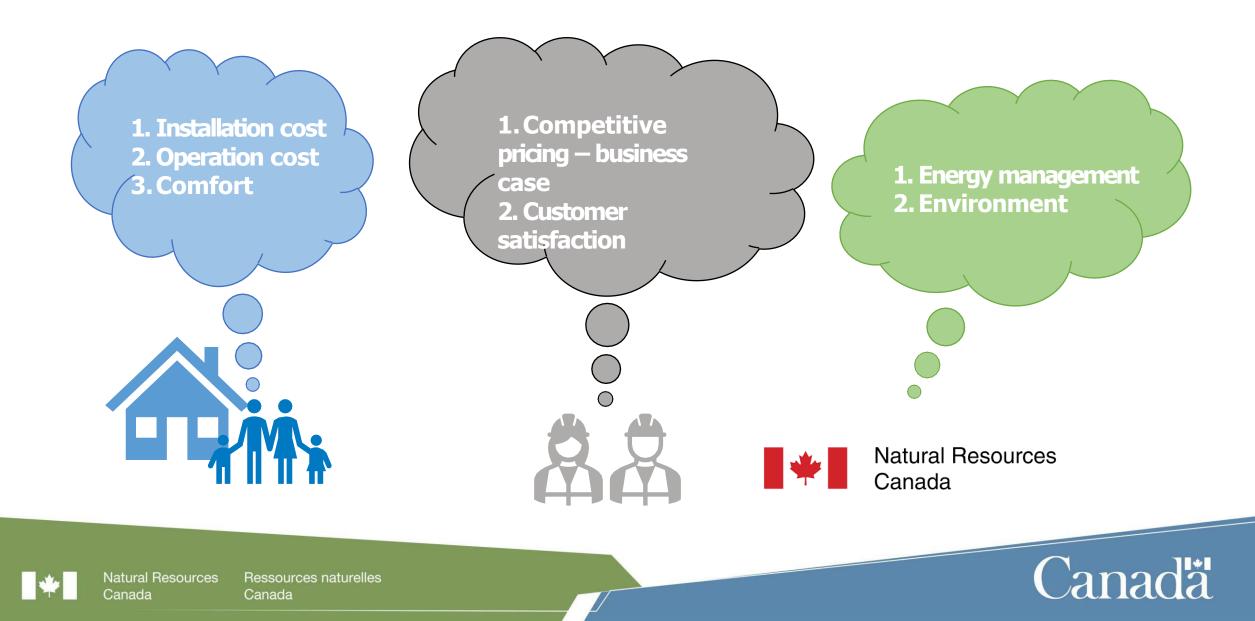

There are many different ways to control a system with a Heat Pump and auxiliary heat

Outside Temperature Balance Point Cutoff

□ Single Temperature Point Economic Cutoff

□ 2-Stage – Temperature Driven Cutoff

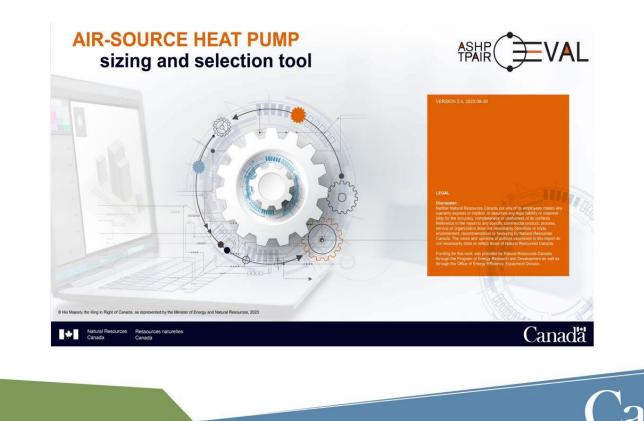
2-Stage – Time Based Cutoff



What thermostat or controls approach are you currently installing?

(i) Start presenting to display the poll results on this slide.

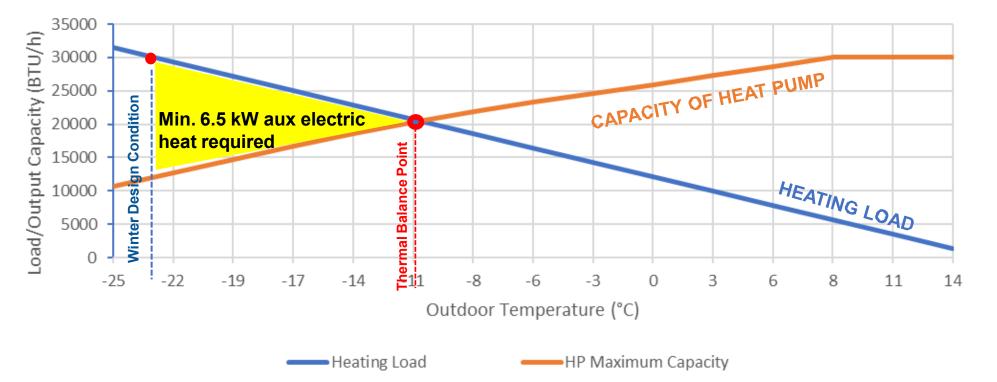
Why should we care about the selected control approach?


Detailed Review Of Control Approaches

NRCan ASHP Sizing and Selection Tool

We used the sizing tool on the Case Study home in Kamloops.

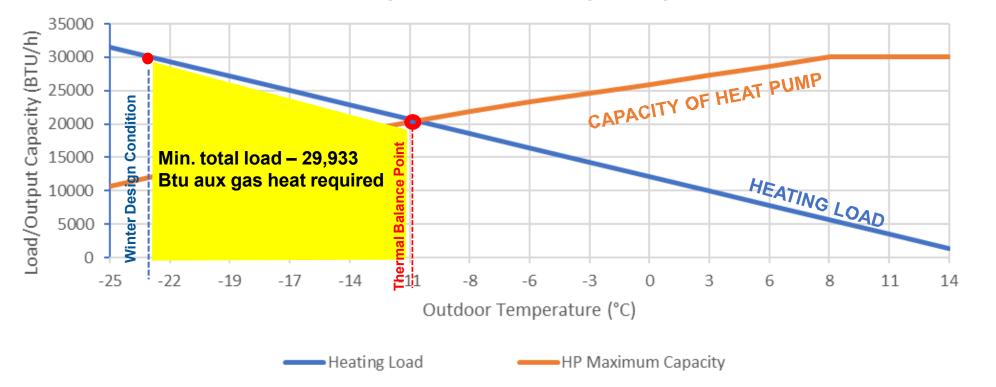
Keep in Mind Heat Pump Capacity: 2.5 Tons (under consideration)



Canada

latural Resources Ressources naturelles Canada

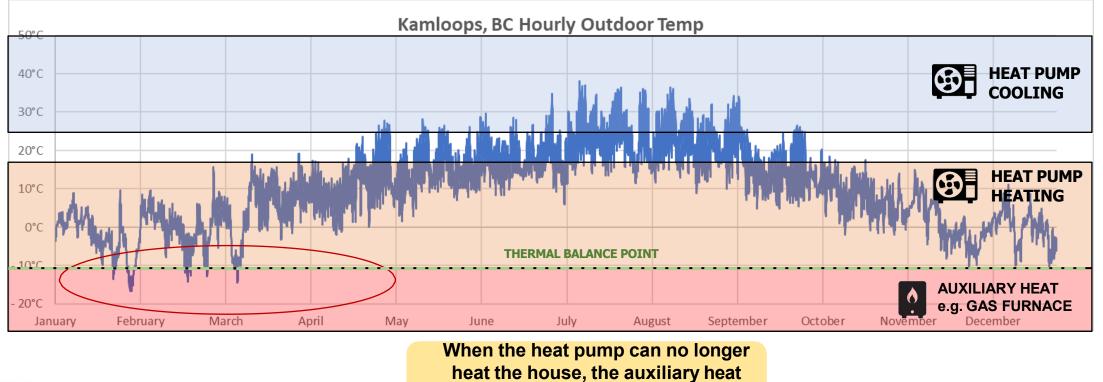
Heating Load and HP Capacity .vs. Outdoor Temp


ALL ELECTRIC

Heating Load and HP Capacity .vs. Outdoor Temp

GAS (Dual Fuel / Hybrid)

System performance may depend on thermostat selection



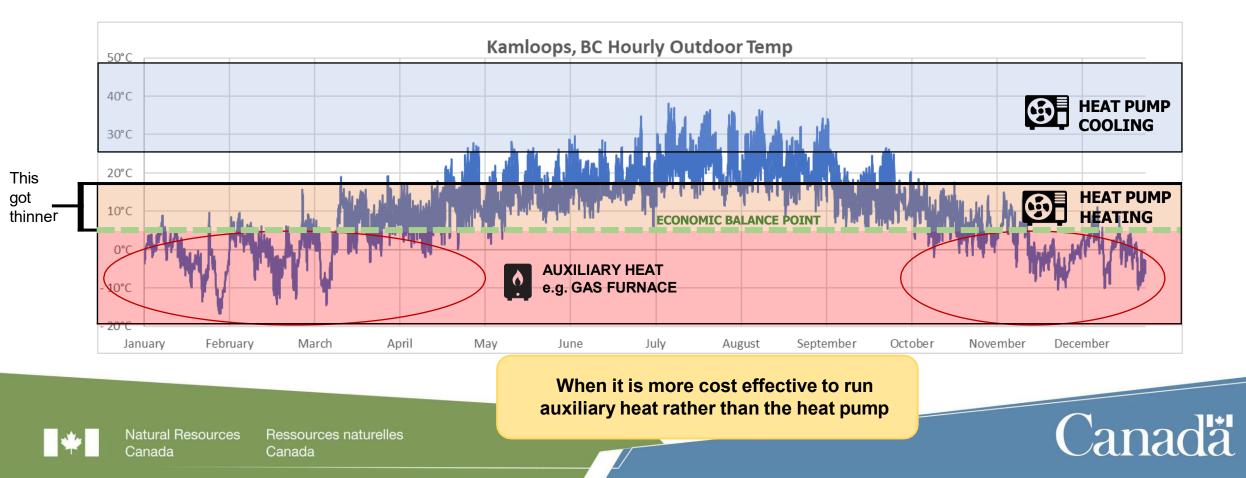
Natural Resources Ressources naturelles Canada Canada

ada

Control Approach 1 Cutoff At Balance Point Temperature (-11°C)

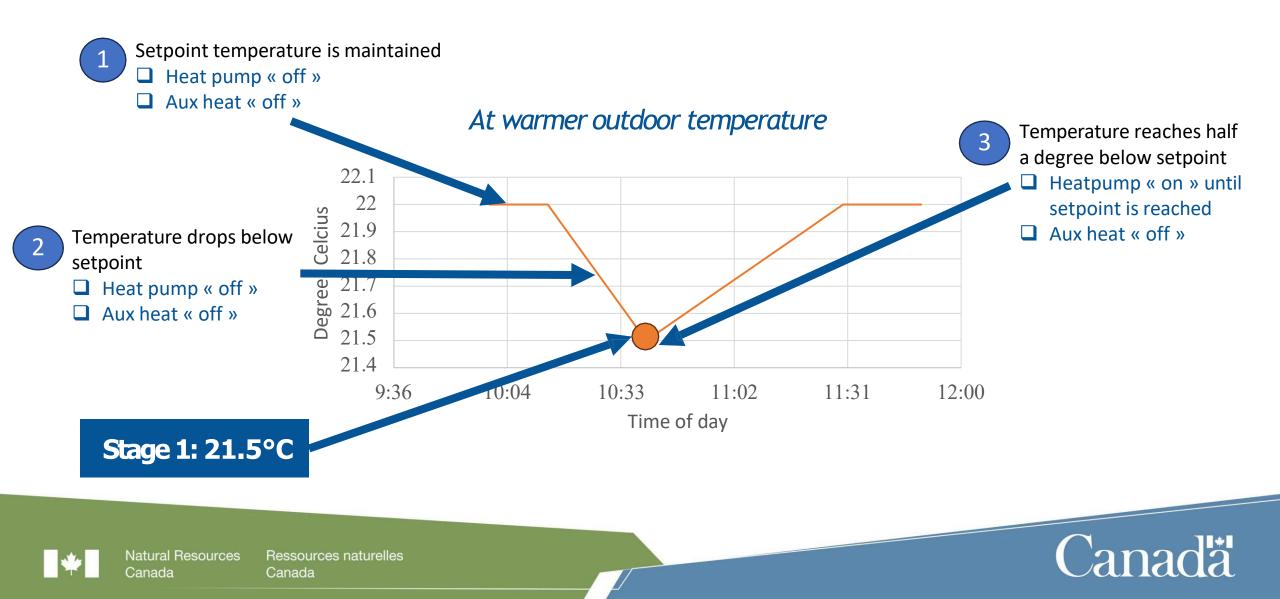
Depending on sizing of heat pump, it may not be able to supply all the heat required for the house. Backup may be required below the thermal balance point temperature.

takes over

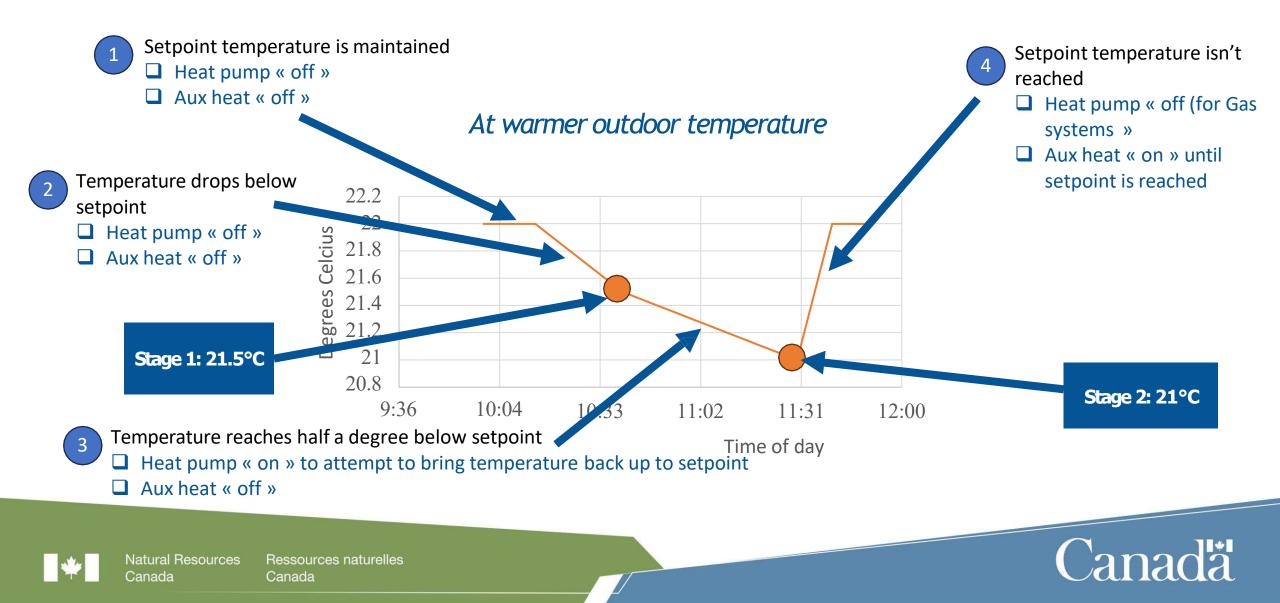

Natural Resources Ressources naturelles Canada Canada

Control Approach 2

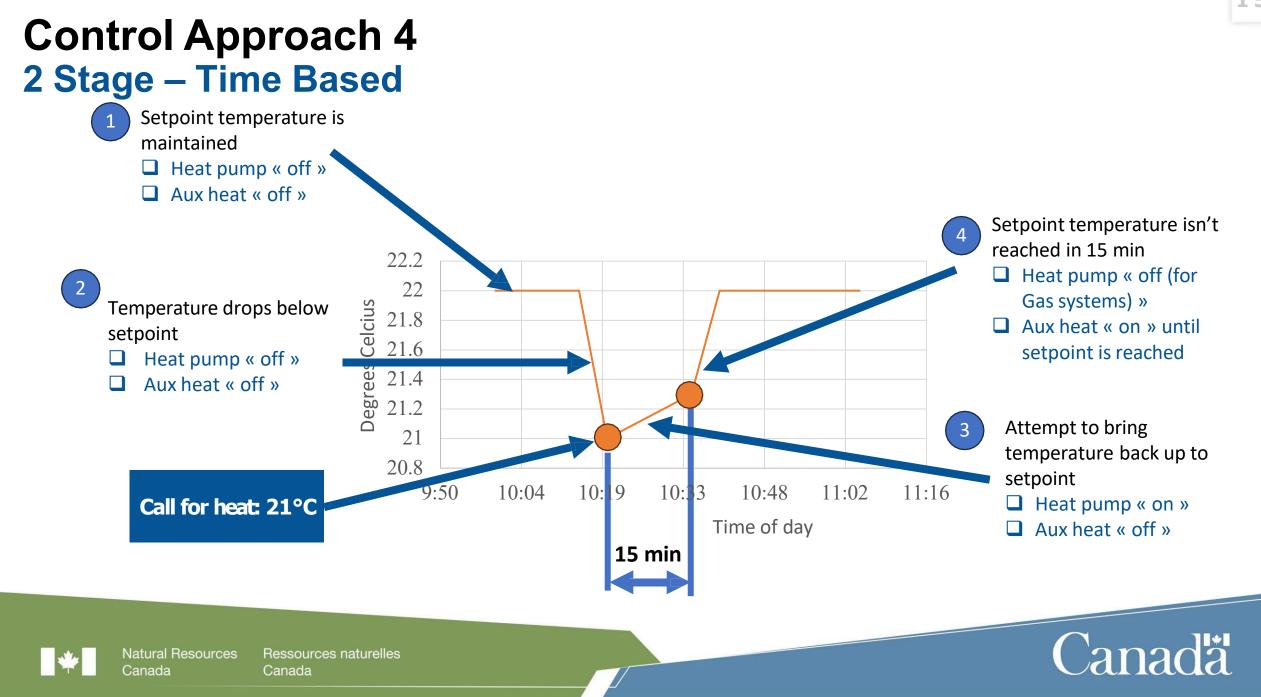
Single Point Economic Temperature Cutoff (+3°C)


At a certain temperature, it becomes more cost effective to switch to auxiliary heating

- **COP** of the heat pump is lower at colder temperatures
- **The NRCan HP Sizing Tool** can help you determine economic balance point


UNCLASSIFIED - NON CLASS F

Control Approach 3 2 Stage –Indoor Temperature Driven



UNCLASSIFIED - NON CLASS IF I

Control Approach 3 2 Stage – Indoor Temperature Driven

UNCLASSIFIED - NON CLASS

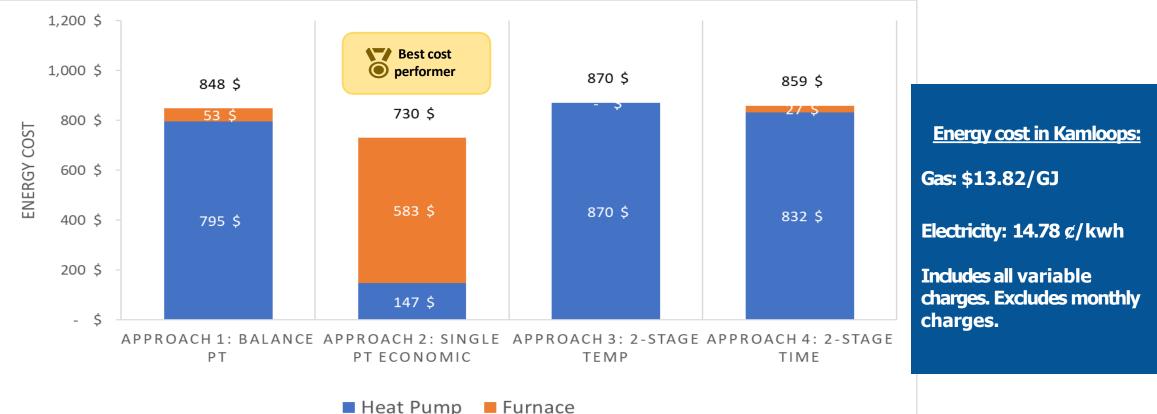
UNCLASSIFIED - NON CLASS

Let's look at our case study home (Climate Zone 5)

BUILDER GOALS:

Canada

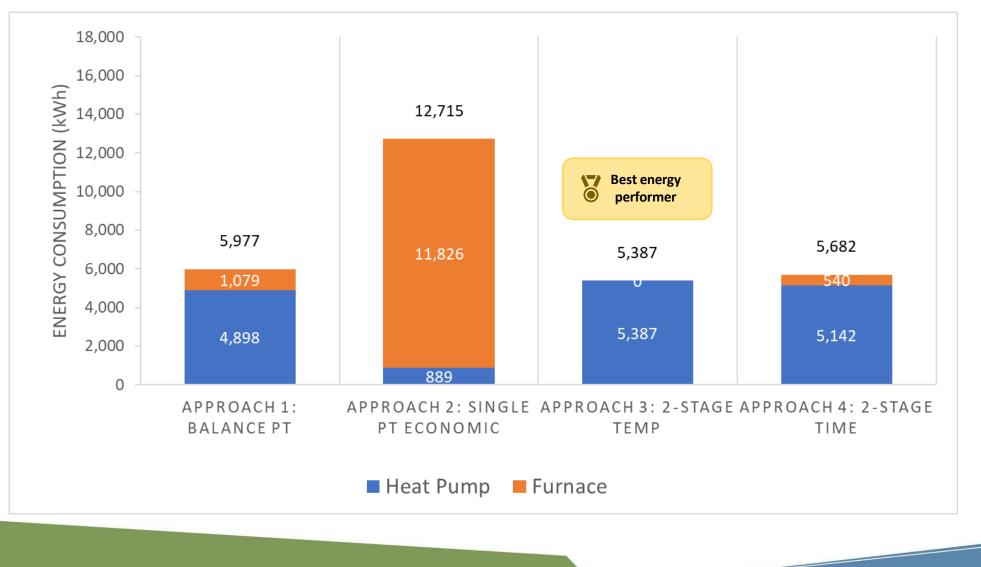
- □ Achieve NZ standard
- □ Improve home thermal comfort
- □ Manage costs


HOME CHARACTERISTICS			
	Heating load	Cooling Load	
Zone 1 (Basement):	11,076 BTU/h	7,756 BTU/h	
Zone 2 (Main floor):	9,535 BTU/h	9,983 BTU/h	
Zone 3 (Second Floor):	9,383 BTU/h	10,002 BTU/h	
	29,933 BTU/h (2.49 Ton)	27,441 BTU/h (2.29 Ton)	
	NET ZERO SPECIFICATIO	NS	
Air Tightness Attic	1.5 ACH50 R60		
Walls	R22+10continuous		
Basement	R22+10continuous		
Exposed Floor	Exposed Floor R40		
Windows	Double R4, 0.6 SHGC, 10.6% of wall area		
Ventilation 75% Efficiency-HRV			
Heating & Air Conditioning	Cold Climate Air Source Heat Pump		
Design Temperature	-23°C		

UANAE CUADACTEDICTICC

Natural Resources **Ressources naturelles** Canada

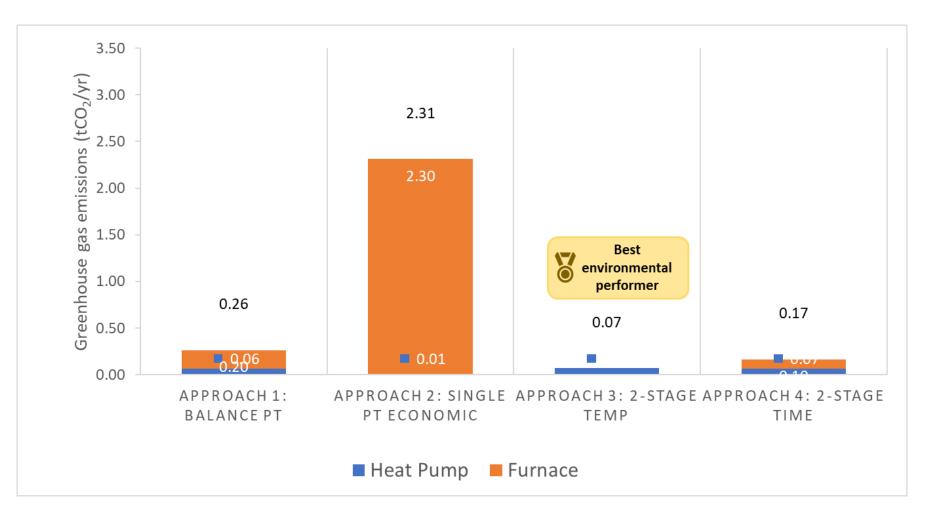
COST PERFORMANCE



Caution: This depends on the efficiency (COP) of the heat pump. At current cost of gas in BC, a heat pump with a seasonal average COP of approximately 2.5 will be at par. Many products on the market exceed this efficiency

Natural Resources Ressources naturelles Canada Canada

ENERGY PERFORMANCE



Canadä

Natural Resources **Ressources naturelles** Canada

Canada

GHG PERFORMANCE

WHAT HAVE WE LEARNED?

01 Current market offering in switch-over strategies and why we should care

 There are different approaches out there and choosing the right one depends on different factors such as goals, location, equipment

02 Detailed review of various control approaches available

- Operating costs, energy efficiencies, and carbon emissions will vary depending on regional utility costs, equipment capacity & efficiency, and Homeowner priorities
- All switch-over approaches require competent HVAC designers to provide accurate and best options

O3 Case study – Impacts of different control strategies in a Kamloops home

- Control approaches can have vastly different results costing homeowners hundreds of dollars per year
- Reduced GHG emissions are not necessarily correlated to lower operating costs

Natural Resources Ressources naturelles Canada Canada

Let's revisit...

Step	Current	Interested to explore
1	Discovery: barriers, challenges & pain points	
2	Configuration: centrally ducted system, hybrid install	
3	Sizing approach: Emphasis on cooling	
4	Supply outlet approach: perimeter supply	
5	Duct Sizing: low velocity	
6	Choose Zoning: single zone	
7	Return Duct design: traditional return design	
8	Duct Sealing: base level sealing	
9	F280 HL/HG: Work with HVAC contractor to complete F280 calculations	
10	Heat pump selection: HP does not meet full load, furnace backup	
11	Utility rates/controls: Backup only below TBP	
12	Dehumidification controls : not implemented/not designed	
13	GHG, cost, energy outcomes	

Natural Resources Ressources naturelles Canada Canada

*

Panel Session: Control Strategies

June 10, 2024 – Vancouver

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

LEEP Heat Pump Day: Net Zero Summit 2024

Ron Sim

Residential Business Manager BC & Yukon

Mitsubishi Electric Sales Canada Inc.

ron.sim@mesca.ca

604-343-2832

Mitsubishi Electric Heating and Cooling Canada

A leader in the manufacturing world, Mitsubishi Electric has been at the forefront of innovation for over 100 years.

Mitsubishi Electric Sales Canada Inc. was established in 1979 and provides an extensive line of commercial and residential products that includes heating and air conditioning, energy recovery and fresh air ventilators, water heating and cooling technology, and more.

Our BC wholly owned supply branch was opened in 2009 and has seen growth both in the residential and the commercial market every year.

Vision

To be the most trusted industry leader in providing innovative heating, cooling and ventilation technology engineered specifically for Canadian climates

Mission

To deliver quality comfort and value to all Canadians through leading-edge engineering, locally inspired design, and a dedication to superior service

Multiple Indoor Options Available

Ceiling Suspended

Ceiling Cassette with Grille

Horizontal Ducted

Multi Position

Air Handler

Case Study Home

BUILDER GOALS:

- □ Achieve NZ standard
- □ Improve home thermal comfort
- Manage costs

HOME CHARACTERISTICS

	Heating load (29,933 BTU/h) (2,49 Ton)	Cooling Load (27,441 BTU/h) (2,29 Ton)			
Zone 1 (Basement):	11,076 BTU/h	7,756 BTU/h			
Zone 2 (Main floor):	9,535 BTU/h	9,983 BTU/h			
Zone 3 (Second Floor):	9,383 BTU/h	10,002 BTU/h			
Net Zero SpecificationAir Tightness:1.5 ACH50Attic:R60Walls:R22+10continuousBasementR22+10continuousExposed FloorR40WindowsDouble R4, 0.6 SHGC, 10.6% of wall areaVentilation75% Efficiency-HRVHeat & AirCCASHPKamloops23°C Design Temp					

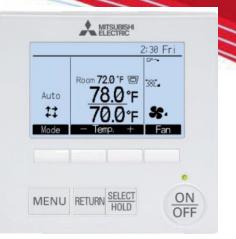
Mitsubishi Electric Sales Canada HVAC Solution

We propose an all-electric solution to this design comprised of the following:

- Forced Air Central System Servicing the Basement and Ground Floor

-Ducted Ceiling Concealed System Servicing the Second Floor

Advantage – Standard design – Simpler Installation for Material Costs –
 Reduced Installation Labour – Reduced Ductwork Requirements for Return Air
 Natural zoning with separate systems for the variety of temperature zones
 No requirement for zoning systems, reduces requirement for multiple
 thermostats


System Design Components

OUTDOOR UNIT PUMY-HP36NKMU2

BASEMENT AND GROUND FLOORSECOND FLOORSVZ-KP24NAPEAD-A12AA

CONTROLLERS PAR-41MAAU

PAC-MKA33BC BRANCH BOX

Mitsubishi Heat Pump Auxiliary Heat Options

Central Forced Air Systems have add-on electric heater systems that work in conjunction with the heat pump units and are an auxiliary system not a replacement system. Sizing ranges from 2 to 17 kW heaters. Only where design temperature exceeds -28 C. require a full load secondary heater.

Model: PAC-YU25HT - External Heater Adaptor. With the addition of the External Heater Adapter and a 12VDC Relay any secondary heating system can be operated as an auxiliary heater. Baseboard heater, Secondary duct heater or Electric Fireplace are some of the choices that can be utilized.

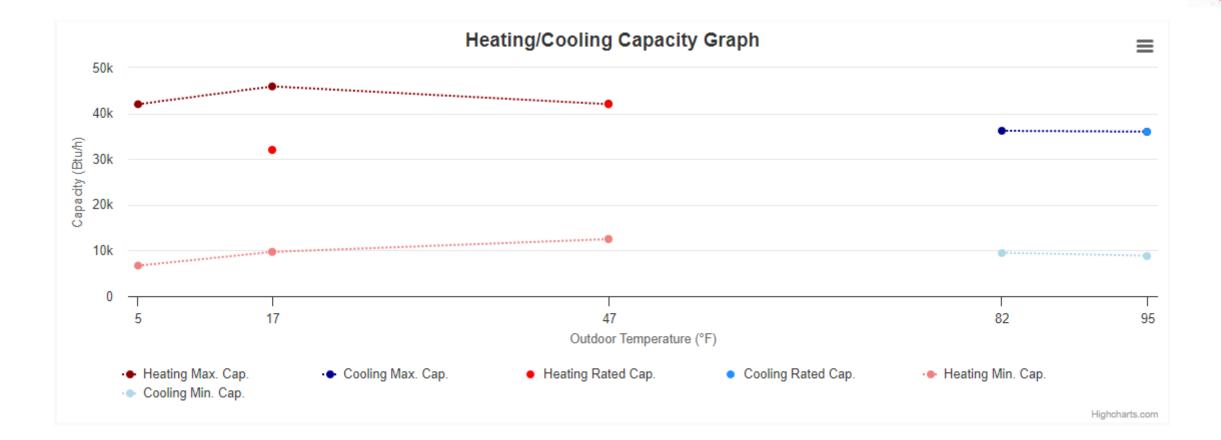
Multi-Zone Flexibility- all our Residential indoor units are compatible with our Multi-zone Outdoor units allowing a huge variety of possible applications

MITSUBISHI ELECTRIC S-Series H2i Central Air Conditioning Heat Pump (HP) Multizone All Ducted AHRI Cert #*: **202423533** Outdoor Unit Model #*: **PUMY-HP36NKMU** Indoor Model #*: Maximum Heating Capacity (Btu/h) @5°F: **42,000** Rated Heating Capacity (Btu/h) @47°F*: **42,000**

Rated Cooling Capacity (Btu/h) @95°F*: 36,000

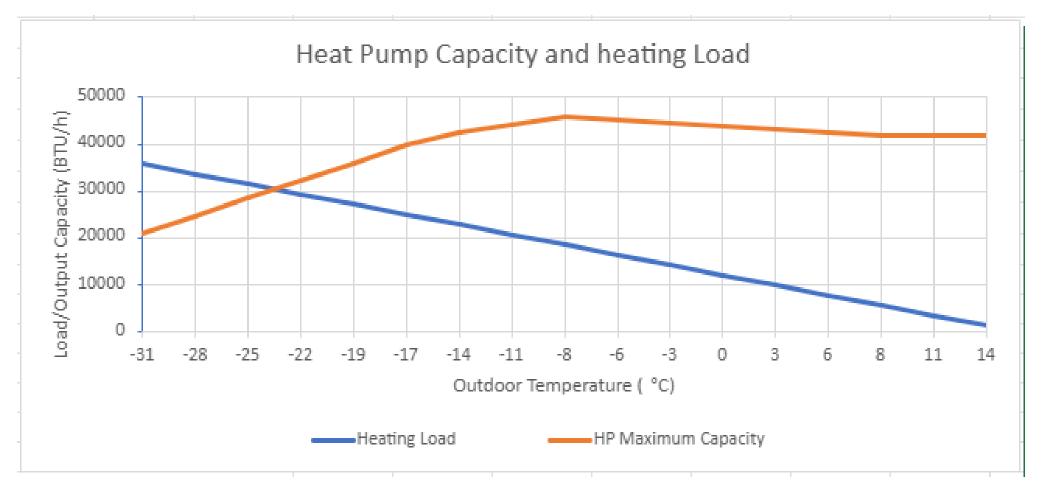
Related Products

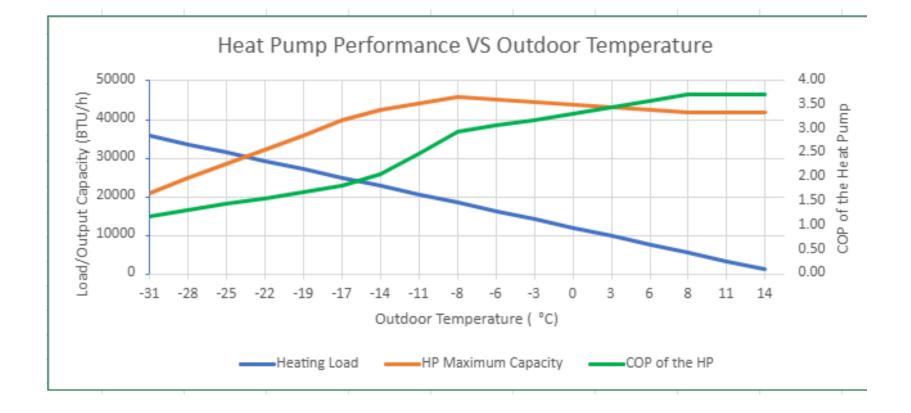
*AHRI certified and verified product information. Rated capacity information is certified and verified by AHRI, input power is manufacturer reported and COP is calculated. Source: ahridirectory.org



OUTDOOR UNIT PERFORMANCE

Information Tables		Performa	ince Spece	5				
Brand	MITSUBISHI ELECTRIC	Heating / Cooling	Outdoor Dry Bulb	Indoor Dry Bulb	Unit	Min	Rated⁺	Мах
Series	S-Series H2i	Cooling	95°F	80°F	<mark>Btu/h⁺</mark>	8,852	36,000	36,000
Ducting Configuration	Multizone All Ducted				kW COP	0.55 4.72	2.86 3.69	2.86 3.69
AHRI Certificate #*	202423533	Cooling	82°F	80°F	Btu/h⁺	9,508	-	36,180
Outdoor Unit Model #*	PUMY-HP36NKMU	cooning	02 F	00 F	kW	0.48	_	2.26
Indoor Model #*					COP	5.81		4.69
Indoor Unit Type⁺	Ducted Indoor Units	Heating	47°F	70°F	Btu/h⁺	12,498	42,000	42,000
Furnace Model ⁺ #					kW	0.62	3.32	3.32
EER ⁺	12.6				COP	5.91	3.71	3.71
SEER	18.3	Heating	17°F	70°F	Btu/h⁺	9,690	32,000	45,898
HSPF (Region IV)⁺	11.7				kW	0.73	4.58	4.58
EER2 ⁺					COP	3.89	2.05	2.94
SEER2 ⁺		Heating	5°F	70°F	Btu/h⁺	6,687	-	42,000
HSPF2 (Region IV) ⁺					kW	0.58		6.48
HSPF2 (Region V)					COP	3.38	÷1	1.9





Capacity Vs. Heating Load Balance Point

What an indoor air handling unit looks like when properly installed.

Things to note

- 1 Tapered return air drop ducting
- 2 Radius turn inside elbow on the return air
- 3. Full flow return air plenum
- 4. Cased Filter c/w airtight door
- 5. Vented condensate drain properly trapped
- 6. Straight piping and tight 90 bends with correct radius turns

PUMY Outdoor Units Evolution

NKMU / HP-NKMU Models	NHMU Models	VM(A) - R22 Models
3, 4 and 5 Ton Outdoor Unit, Single Phase.	3 and 4 Ton Outdoor Unit, Single Phase.	3 and 4 Ton Outdoor Unit, Single Phase.
HP indicates H2i Hyper Heat Models.	(-BS) indicates unit is salt-protected.	Production: 2003 - Obsolete
(-BS) indicates unit is salt-protected.	Production: 2006 - Obsolete	PUMY-VM(A) - R22
Production: 2019 - Current	PUMY-P-NHMU(-BS)	

PUMY-P60NKMU(-BS)

PUMY-P-NKMU1(-BS)

- PUMY-P-NKMU2(-BS)_HP-NKMU
- PUMY-P-NKMU3(-BS)_HP-NKMU1 Current
- PUMY-P-NKMU4(-BS)_HP-NKMU2 Current

www.mitsubishitechinfo.ca

What makes our equipment different?

Dependability and Reliability have always been the hallmark at Mitsubishi Electric Sales Canada.

Tradespeople, Engineers and Developers have learned over the years to count on our dependability.

Through mandatory requirements of having Certified Journeyperson Refrigeration technicians working for the contractor and requiring contractors to take technical training programs both on-line and in-person training.

Technical Support is available with technical advisers based in Burnaby BC and available to travel to various communities for training opportunities. Primarily our out-of-town training has focused on Vancouver Island but training is being scheduled for the Okanagan communities also.

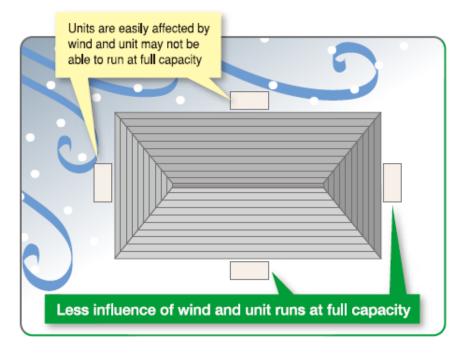
We offer technical assistance during start-up and diagnostic reviews, our technicians are based in BC, 2 commercial technicians and 2 residential and light commercial technicians

MITSUBISHI Changes for the Better

CONFIDENTIAL

MITSUBISHI ELECTRIC SALES CANADA INC.

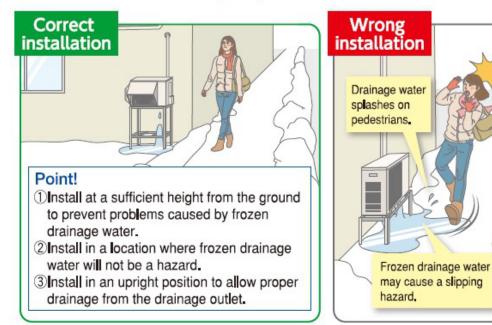
© MITSUBISHI ELECTRIC CORPORATION 4

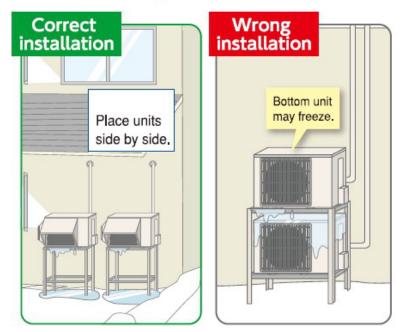


Outdoor Unit Installation Considerations

1 Installation location

Be aware of the prevailing wind direction in winter and install the outdoor unit where it is sheltered from the wind when possible. When not possible, it is recommended to use an accessory wind baffle




2 Measures for drainage of water

Case 1: Unit installed near walkway Do not install the unit near a walkway as the drainage water can freeze causing a slip hazard

Case 2 : Multiple units are installed

Do not install units on top of one another as it may cause frozen drainage water on the bottom unit.



M&P Series

Unit is installed on the ground

To avoid the adverse effects of snow, ice and defrosting issues, install the unit on a stand to ensure a sufficient height from the ground

Key Considerations

Your Heat Pump is a long-term investment you are making for the future. For best performance and peace of mind, some key considerations include

Choosing the right contractor:

- For quality work, make sure that your contractor is licensed, bonded and insured to ensure that they meet professional standards & legal requirements.
- Check **references and reviews** to gauge their reputation.
- Look for a contractor with specific experience in heat pump installation and knowledgeable for both design & installation. Ask about familiarity with different types of heat pumps

 air source, cold climate, etc.
- Confirm that the contractor is trained by the manufacturer to ensure that your system is optimally installed as recommended by the manufacturer.
- A good contractor will guide you through the decision-making process and help you make informed choices. They should provide high-quality installation to ensure optimal system performance
- A thorough contractor will analyze the home to **determine the best heat pump solution**. They will consider factors such as insulation, ductwork and your specific heating needs.
- Inquire about manufacturer's warranty and on-going maintenance services to keep your system running efficiently.
- ASK QUESTIONS

Thank You

Ron Sim

Residential Business Manager BC & Yukon Mitsubishi Electric Sales Canada Inc. <u>ron.sim@mesca.ca</u>

604-343-2832

Let's recap: ASHPs for High Performance Homes

June 10, 2024 – Vancouver Sneha Bernard - Local Energy Efficiency Partnerships Jérémie Léger - Local Energy Efficiency Partnerships

LEEP has tools, resources & training to support

01 NRCan's Air Source Heat Pump Sizing & Selection App

• Supports a collaborative discussion and decision-making process with builders, HVAC designer and trades – leading to better-fit equipment that is right sized for the home

02 LEEP Technology Guides & Tools

- Master Planning & Decision Tool & Guide for Forced Air Mechanical Systems
- Toolkit for air source heat pump sizing and selection
- Dashboards to navigate the NEEP database for product availability

13 LEEP video series for new and retrofit housing

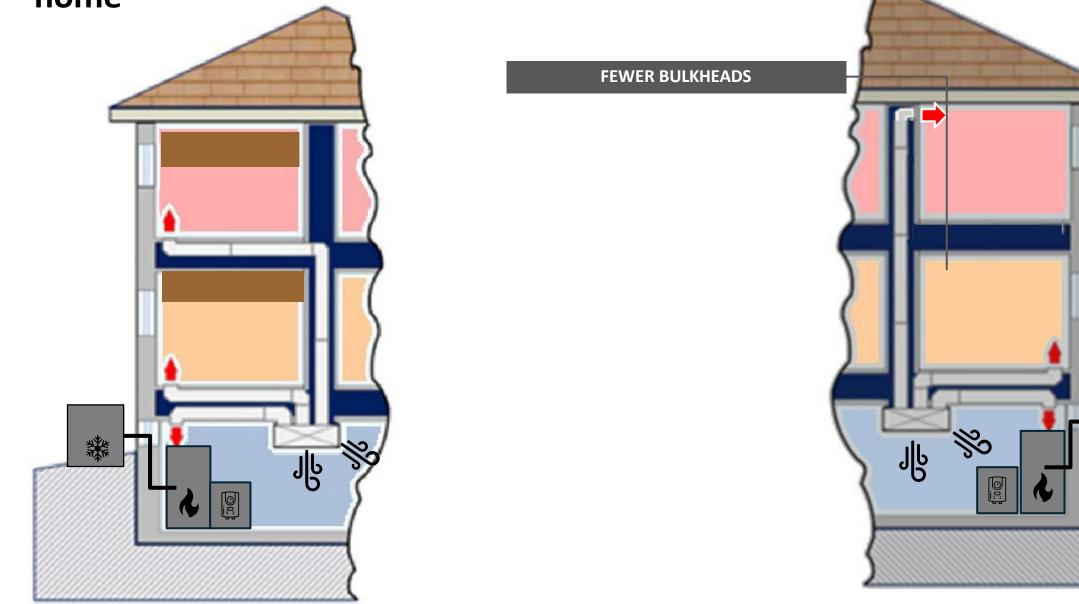
- Best practices in heat pump retrofits in a range of communities and housing types across Canada
- Planning, design and best practices in mechanicals system design for new homes

Industry expertise!

- Leverage the expertise in the room today!
- HVAC Designers of Canada networks
- Manufacturer & industry training programs for your trades & installers

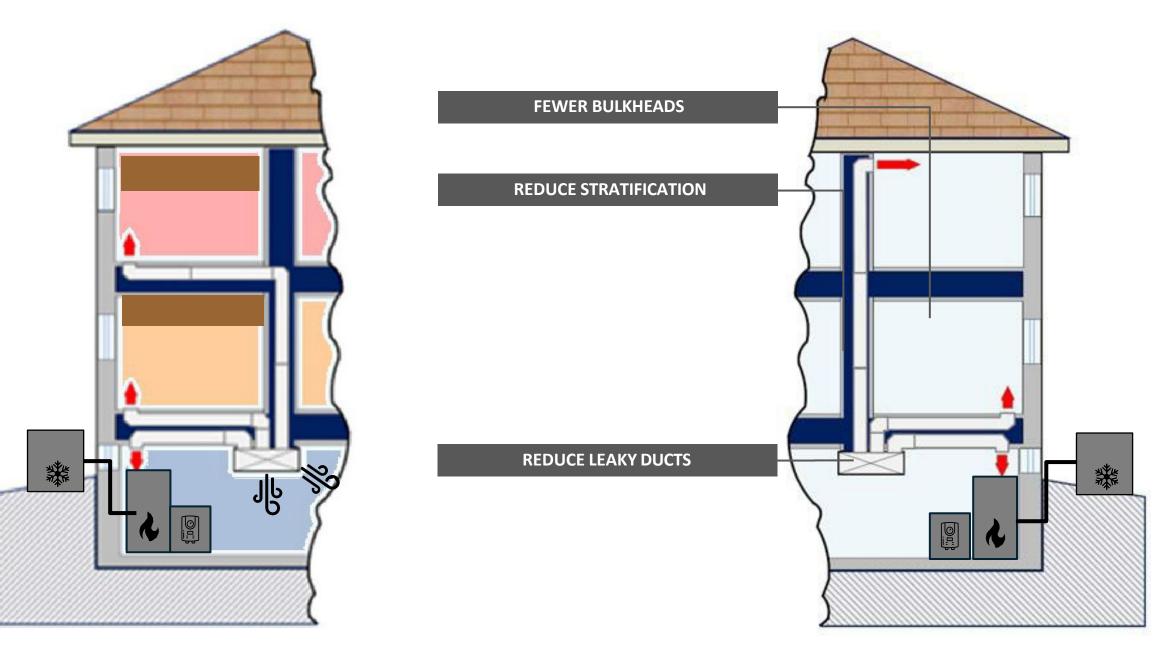
How did your design selections change through the day?

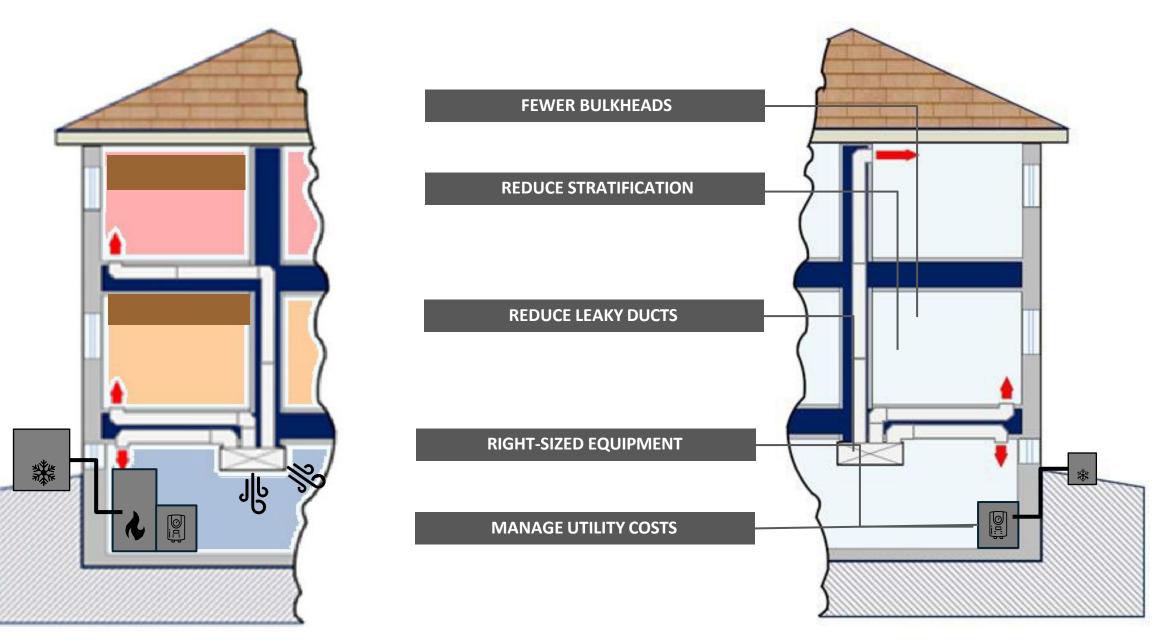
Step	Current	Interested to explore
1	Discovery: barriers, challenges & pain points	
2	Configuration: centrally ducted system, hybrid install	
3	Sizing approach: Emphasis on cooling	
4	Supply outlet approach: perimeter supply	
5	Duct Sizing: low velocity	
6	Choose Zoning: single zone	
7	Return Duct design: traditional return design	
8	Duct Sealing: base level sealing	
9	F280 HL/HG: Work with HVAC contractor to complete F280 calculations	
10	Heat pump selection: HP does not meet full load, furnace backup	
11	Utility rates/controls: Backup only below TBP	
12	Dehumidification controls : not implemented/not designed	
13	GHG, cost, energy outcomes	



Natural Resources Ressources naturelles Canada Canada How does this impact our case study home? Let's look at the business as usual scenario...

Steps 4-7: Better distribution design and temperature control through the home


鱳


Steps 4-7: Better distribution design and temperature control through the home

Step 8: Reduce duct leakage

Step 9-11: Right-sized equipment, minimize reliance on backup furnace

Key takeaways

02

01 Improved collaboration and verification between builders and mechanical designers will optimize the HVAC system within the project requirements.

F280 Load Calculations:

• Code compliant F280-12 load calculations is the foundation on which all other HVAC decisions are dependent. Builders need to take ownership of their load calculations.

O3 Control approaches can have vastly different results costing homeowners hundreds of dollars per year

04 NRCan's ASHP Sizing & Selection App provides data to support you selecting your mechanical systems.

- Better data leads to effective communication of performance
- Careful selection through discussion leads to better performance and fewer callbacks

What other topics would you like to see training on?

(i) Start presenting to display the poll results on this slide.

What format would you like to access training?

(i) Start presenting to display the poll results on this slide.

Thank you for joining us today!

Contact: nrcan.leep.rncan@canada.ca

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

